~

€

< ’le <
. DOCUSENT RESUNE
. ED 207 583 . ~) 4 IR 009 701
lY AOTHOR Goldstein, Ira‘ﬁt: Miller, Mark L. %} .
<« TITLE . Structured Planning and Debugging: Linguastic
Theory of Design: Al Memo 387. , .

INSTITOTION Bassachusetts Inst. of Tech., Cambridge. Artificial

.) Intelligence Lab. .

SPONS AGENCY Advanced Research Projects Agengy (DOD), Waspington,
' D,C.: ldﬁiqnal Science Fqundation; Hashingt9n,

. A upnified theory of planning and debugging is ~
explored by designing a problen solving program called PAZN, PATN

L, .. uses an augmented transition network (ATN) to represént a broad range
« of plamaing techniques, including identification, decomposition, and

reforaulation. (The ATN is a simple yet poverful formalisa which has .

been effectiveély utilized in computational linguistics.) PAIN's plans
may manifest "rational bugs," which result from heuristically’ .
justifiable but incorrect arc transitions in the planning ATNe This

~ aspect of the theory is developed by design nd‘j'bdlplenéntary

+ debugging module called Dnﬁn, vhich would agnose and rep@ir the

errors in PATH's annotated plams. The investigation-is iacoaplete asd'

’£ATn.has not yet been implemented, but sufficient detail is presente
1 HACKER research: Since a detailed study of planning and debuggin
' techniques is a prerequisite for "complete fulfillment of Dijkstra's
‘objectives of program reliability, readability, portability, and so
on, the theory is called ®structureéed. Planning agd Debuggiig® to.

empha=sizé its potential Tole in this enterprise. ‘Fifty-seven A
references are listed. (Author/LLS) .. ‘)
.b H
- -, j

' i

]
v . /

'.**###ﬁ###J##‘#######*t!#?####‘#;’J####!#######.#ﬁ##########'#####"’f'
RS »

s, Reproductions supplied by E are the best that can be ‘made
C % N from the original-document.

‘. P DoCo ‘. r ‘

‘REPORT NO L0GO0-34 _ : -)

_POB DATE °~ 'Dec 16 ’ : . .

GRARY : 'HSF-B§“07OBX: ONR-N00014-75-C-0643 _,

NOTE ° - 92p.; Por related documents, see 1K 009 697, IR 007 *
. . 700, and IR 009 702. N .
¢ ’ . ’ - 4 .)

'+ EDRS PRICE MF01/PCO4 Plus Postage. i
4 DESCRIPTORS Artificial Intelligence; Computer Graphics; *Computer,
. _ Programs; Diagrams; *Linguistic Theory; *Planning;
- . *Problenm 501vingi Programing; Task Analysis

IDEFTIPIERS Debugging Aids; ¥Structured Planning and Debugging

, . Bditor -~ - :

ABSTRACT !

o provide a theoretical framework for recomceptualizing SuQSIaqgs‘ ,

-

*

###t##############f"######t######.##########ll##############?###*##*

’ f
—— - -
i

‘. ! i
) D 3 ' . ‘ -

o . | | L

-

ED207583

—

-

G 7o/

:

- OyCED Exacr AS RECEIVED FROM
THE PERSON ORYORGANIZATION ORIGIN-

Koo

. .
’ s
.
.
.
-
. et A
. .

\/
/ e -
. - Mauachusetts InStitute of 'Feehnology ' |
Artificial Intelligence Laboratory
Al Memo 387 December 1976 Logo Mémo 34

L TN

~

Structured Planning and Debugging.
" R Linguistic ‘I’lieo_ry of Design

ATING IT POINTR OF VIEW OR OPINIONS : ‘ ’
STHTED DO NOT WECESSARILY REPRE-
SENYOFFICIAL N TIONAL INSTITUTE [e]3 - Aad

EDUCATION POSITION DR POLICY . . v e - * - . -
Jra P. Goldstein and Mark L. Miller .
» ‘ﬁ“ “ * :

&

US DEPARTMENT OF MHEALTH
EDUCATION & WELFARE
NATIONAL INSTTTUTE OF

EDUGATION

THIS ODCUMENT WAS BEEN REPRO-

?

, A unlf ied theory of phnnlng and debugging is explored by designing a problem
solving program called PATN. PATN uses an augmented transition network (ATN) to -
" represent a broad range of planning techniques, including identification, decomposition,
and ref (The ATN [Woods 1970] is.a simple yet powerful formalism %hlch
- has been ef fecdve y utitized in computmonal |mguistlcs)
PATN’s plans may_manifest ratlonal bugs,” which result from heu tica!ly
_Justifiable but incorrect arc transitions in the planning ATN. This aspect of .the theory
™ is developed by designing a. tomplememary debugging module called DAPR, which
" would diagnose and repair the errors in PATN’s annotated plans. .
Th lnvestlgauon is lncomp!ete PATN has not yet been implemented.- But
© sufficiesft decail is presented to provide a theoretical framework for reconceptualizlng :
Sussman] HACKER research.

Since a detailed study of planning and debugging téchniques is a prerequisite for
complete fulfiliment of Dijkstra’s objectives of program reliability, readability,
portability, and so on, the theory is called, "Structured Planning and Debugging,” to :

‘ emphame its potential role in this emerpme

e -

This report is a revised vérsion of Al Working Paper 125 (Logo Working Paper 55), It
describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. It was supported in part by the National Science Foundation under grant C40708X,
" in part by the Advanced Research Projects Agency of the Department of Defense under Qffice of
Naval Research contract N0OO4-73-C-0843, and in part by the Division for Study and Research in
Educguon. Massachusetts Institute of Technology .

’

+

£ - . . +
Structured Planning and Debugging . - - 2 = GoMstein.& Miller
_ . Pt . . _
- | ‘
. o . Contents

» . ? .

1. Introduction -

K . . ~ . v v

2 Structured Planning ° R '
o 21 An Augmented Transition Network for Planning
22'PATN’s Plan Node . °
23.‘Problem ddentification e
.24. Problem Decomposition . ,
2.5. Decomposition by Con junctior® / RN
26. PATN's Subgraph for Con pinction °
. t 2.7. Composition by Sequential Refinement ' ’ .
Lo 2.8. Decomposition by Repetition - , -
to 29. Prpblem Reformulation . : g

*3. Searching for the Plan /
. 8.1. 'Lookihead . .
3.2.-Least Commitment . ' .
. ‘33, Differential Diagnosis A e
3.4. Lemma Librarjes . o

-
‘, , -

4.’ Structured;Debygging - . v
) 4.1. Model Diagnosis ' -
4.2. Process Diagnosis ’
- 4.3. Plan Diagnosis .
44. Repair /
5. Limtations of the ATN Theory of Bugs

> -

5. Reconceptualizing HACKER .
»..+ 51 Bugs Anising from Incomplete Plans

5.2. Bugs Arising from Incosre Con junctive Plans ’ '
g3, Bugs Arising from-Incorrect Disjunctive Plans - R
" 5.4. Generalizing the HACKER fandlgm’ ' - B
". 6. Conclusions i ’ { :
6.1 Limitations and Extensions of Structufed Planning * ’

.. " 6.2. Summary of the Structured Debugg g Viewpoint
6.3. Protocol Analysis | ~
" §.4. Structured Programming
635. Al-based Computer Aided Instruction
,68. The Scienc¥ of Heuristic .
7. Notes o i,
8. References o

&
.

hY . . ‘ . , .
. Thanks are due to M. Genesereth, B. K,u)pers, D. Marr, D. McDermott and S. Rosenberg, for

arefully critigizing an earlier version of this paper; and to Carol Roberts, for help with the
flksstrations. o . -~

. 4

S | (

e ¢

L 3

) (_ s
Structured Planning and Debugging 3 - Goldstein & Miller

-~

g , ,‘ { 1. Introduction

\ /
-
: Thowh itis dimcu]t to. prescnbo eny Thing in these Sorls of Cases, and every
" Person’s own Genius oughtsto be his Guide in thése Operations; yet | will
endoavor to show the Way to Learnors
Newton, Universal Arithmetick (transiated by Ralphsom 1769, p. 198),.,
from {Polys 1965,p. 89}, .. {"‘ ' ©)

-

The structured programming movement [Dahl et al. 1972] has focused the concern of

oompute;ﬂ sclentists on the process of Sreating prJgrams. Work in artificial tntelligence (AD has
developed a complementary theory of debugging [Sussman 1973; Goldstein 1974]. But, exceut for

Sncerdot‘l'i, (1975) work on procedural nets, a comprehénsive approach has not yet béen atgempted.

«

Ce

This is a preliminary report on a theory called Structured Cﬁnntng and Debugglng' which we
believe to be a step towards an integrated theory of design.

“Our task has two aspects. l-'lrst, wer hope to understand certain intrtcactes of planning and

» T -

‘ debugglng, such as are encountered in the design of programg which must, take into account

7

- .

interactions in achieving depe’ndent subgoals. The second/aspe_ct of our task is to seek a -

L)

r'epresentattohal framework in which to elucldate these subtleties, and in Which ta structure a ;vlde
varlety of phnntng technlques. Our methodobgy is to begin ‘with slmple but clear formalrms.
studying their virtues and Iimitatlons Our resea,r:h plan is then to lnvestigate a series of
progressively more powerful and elaborate representations after we have réached a solid
undersundlng as to where the extra power is needed and why‘ |

.

In earlier work, we have studled one plrtlcularly slmple representatlon for plannlng'
 J

knowledge: context free gnmmars (eg. [Mmer & Goldstein I976b]). In this ess;y we pursue.the

invéstigation by exploring the use’of a more elaborate' forrnalmn We utilize an augmented .,

trensition network (ATN) (Woods I9'IO]2 to represent an hierarchtcal tuonorny of pl:nnlng
methods ‘We are ex‘pbrlng ATNs as a repre!entatlon for plannlng concepts betause they’ dlrectly

snenllze context free grammars, and because ‘work i computational linguistics has shown them

. - ! P .

.
Y S %'

Structured Planning and pebugglng - ,’/ 1 -) Goldstein & Miller
, S /) \ N
" to be both persplcuous and rich in e retslve power ot e, \/
"An \TN is & ﬂnlm;_raic iran:mon graph with Iabeljed stites and arcs, augmented by
¢ .
%recursion and a f inlte number of registers. Assoclated with each arc may be conditions on ’

fbllowing the arc, and actions to be executed if the arc is followed. Typlally the conditlons are
/
r‘tricted to BOolean predlcates/over the contents of the reglsten The actions are- restrlcted. to

structure building and ifyly/g the contents of the reglstets ' S

-~

(- - We agply the ATN rol%mliun to planning by representing possible planning decisions as. -
transitions bétween nodes or /the networle The semantEcontext. imluding the problem aescrlptlon.
is defined using the ATN's } reglsters Pragmatic knowledge specifying which planning strategies.
to ipply in which situatlons. is modeled \by arc transition constralnts\ The ATN constructed in thls
fashion defines a problem solvlng program ralled PATN (Planning ATN).

» + CAVEAT: to simplify the discussion we spék— of PATN as If it were a
’ ; working pr?éra_rh. However, at this point in tlme. PATN is only a design.) ' ~
- .. This design is sufficlently preélse' to be hand-simulated on simple problems, but ,) .
. ‘ thorough testing must await implementation - . .

The possibility.of rammal errors maltes debugglng an important part of y problem solving
theory. Ratlonal errors are def ined as mistakes in planning that arise from the use of reasonable - ‘ J

heuristics. This atpect of our theory is developed by designing DAPR (an acr‘onym for Debugpr ’

of Annotated PRagranu) a debugging module for use with PATN In DAPR terms; dlagnom is

. the isolation of incorrect or incomqlete transitions made between ATN states during the plannlng
process. Repair conslsts of re-planning, guided by advlce from the dlagnosis A description of
basic bug types in terms of specific errors in the planning process Is undertaken, DAPR would

dlagnose and repair annotated programs, in that a Yecord of PATN's plannlng decislons (the
S ps)

dertvation tree) is expected to be associated with the code .

€«

! ~
T'hmughout the paper, we employ examples from two benchmark Al domalna the bloclu .

V) ‘

-

ts

P

¥ M 'y
- 0 . s

“Structured Planning and Debugging (5 ‘ Goldstein & Miller

r'd
. - Te

world, and the Logo ‘turtle world fPapert 197a, 197Ib, l9731 Bbc?s world problem solvers include
. SHISDI.,U (Winograd 1972] BUILD (Fahiman 1974), HACKER (Sussman 1973) and NOAH

(Sacerdoti 1975) Hence,'applying PATN to the blocks worla-provldes a common' set ‘of problems :

\vhich multlple problem descriptions.are possibl-, ranging ffom Euclidean gcomelry 1¢ Cartesian

geometry; (b) the Possible programs range over a wlde spectrum of complexlty, and (c) extensive

docum:nmlon exist on human performance in thls area [G. Goldstein 1973 Okumura 1973)

»Section two presents a taxonomy of planning technlques, and usel-thls'taxonor’ny to construct

- -

the pla\'mlng ATN. Thls defines a basic problem solver which, due to its reliance on exhaustive

-

backtracking sarch in mversing the ATN would be inef ficlent. The third sectlon addresses lh{x
’drawback discussing subtleties in phnnlng when viewed as a search'process Smce certain
) h'eurlstlcally justifiable planhing cholces an nonetheless lead to bugs, leluon four develops a

complemenury theory of debugging.” This allows for re}onceptualiung Sussma? s (1973) HACKER

in section five. . The concludlng kectlon considers Ilmi’ations. extensions, and applications of the
.

Structured Phnnlng and Debxugglkppmch

L]

for comparison The virtues of the Ldgo gnphlcs world. are: t] gnphlcs is an’ envlronment in .

. . ‘ . ,_‘ “ ..
-6‘

Structured Planning and Debugging
NT

For a 8 fortnight | had bnn o“ompﬁn; to prove that there could not be any
tunction ansiogous to what 1 have'since called Fuchsish functidps. ‘| was at that

- time very ignorent. Every day | sat down at my table and spent_an hour or two .

trying a great number of combinations, and | srrived at no resull.> One night 1

took some black coffee, contrary to my custom, and was unsble to siesp.” A host -

of ideas kept surging in my bead; | could almost feel them ;ostlm; one another,

unM two of them coslesced, so to spesk, to form a stable combination. When

morning came, | had established the existence of one class of Fuchsian funeti oo
Pomcwe,ﬂ., "Mathematical Biscovery,” in (Repport l963.p 132) o

. In this passag;. Poincare seems (o suggest that human 'problem'solv\mg relies heivlly upon
taborious consideration of numerous po;sibllitles. Is Poincare cosrect, or is there a well organized

collection of phﬁnlng concepts to guide the problem solver? Polya’s many ln'sightf ul analyses (1957,

1962, 1965, 1967] support the asseftion that phnniné knowledge is highly structured. This’ section
. l . :

pursues a view closer to Polya's, by classifying plans, and by developing that classification into a

procedural theory of design.
_ Figufel shows an hierarchical taxonomy of commeon planning technlques.4 We sh?“

illustrate how an ATN can be used fo. represent this planning knowledge procedurally, by

- N <
scrutinizing solution by (a) ldcntlﬂcmon with prevlous solutions and (b) dctonpomlon into

D

con junctive subgoal& The taxonomy shown in the flgure is more extensive than this, in order to
Indlcate the context in whlch our discussion takes place. Repetition and nfomulctton are

comldered briefly, near the end of this sectlon -

in the taxonemy, plannlng begins with a choice between tl{;ee methods -- ’Identlflcatlbn.

-

decomposition and reformulation. .By tdmhﬁcattoi, we mean iecb&nlzlng the p'roblem as one

which has previously been solved, or notlclng that.the current problem is a direct speda! case of

one which/has previously been solved. By decomposmon we mean dlvldlng me current problcm

into sub-prgblems \,hlch are (hopefu!ly) easier to solve. The.third category, reformulation, refers to

v

' tnnsformlng the problem descripfion into an akernative form whose solution is equivalent to, or a

_7 | : (\\

v

A]

v

. E-C T _,))

< _ . .
! i Structured.Planning and Debugging) 1 “ . Goldstein &/Miller
v " .) T ¢
. M R B S
.] . 1 4 .
. — PRIMITIVE",) -
\ : " }
— IDENTIFY ——
. [PREVIOUSLY ®EFINED PROCEDURE ‘ -
LY ' .
. - . N \ HET
. | LINEAR—L—
N . . ' - ' |FSEQUENTIAL
’ —CONJUNCTION—{ . ‘ ‘
! Ly DECOMPOSITLON
-NONLINEAR- -
, \
.) . "}-COMPOSITION
PLAN {— DECOMPOSE—{ .
| ' T
_) -ROUND _
. ’ . —REPETITION— ‘
- -RECURSION
: | REGROUP . =~
g ‘ | —EQUIVALENCE— - -
‘ . : Ve ~GENERIC ¢~) EXPLICIT
. ' * |— REFORMULATEA ‘)
R .
A 1 *
SPECIALIZE
. _STMPLIFY NERALI ZE
ALOGY
. FIGURE 1
. ’ .. . TAXONOMY/OF PLANNING CONCEPTS ,
i . » ° ») .) P

.
’

Aol

-~

» 0
<

Structured Planning and Debugging =~ 8

-

~

oYy \

least a itepplng stone towards, the solution of the origlﬁal pr\olylem.r

»

2.1. An Augmented Transition Network for Plenning] < -
Before prnamng',addltlmﬂ 'det-u"ﬁ Lconcerning our ¢lassification of planning téchnlque;. it
imy be hélpfui to intreduce the manner ln‘:whlch our definitions are formalized via rq;memlng

them in an ATN. Figure 2:provides a global view of PATN, showing the connections between the °

. various pl;pnmg statéd: _The ‘stage is set by conceptualizing our planning tixonomy as & decision

tree of akernative pians. The decision process is mddeled by a mmbondlﬁg finite state transition
diegram: each named plan type in the.uxonomy becomes a state in the transition graph; each

“subset link" become3 an are.

-

- > ‘
~This planning taxonomy (decision tree) lﬁonverted- to procedu by the following

augmentations:. N ‘ S

) ™) Regtsters: Several registers are introduced to carry the semantics of the problem

’ solving process. This includes the specifications for the procedure currently

\ « beng“constructed (Model), arid thé currently proposed solution (S). Figure 3 is
a list of the registers\whiCK are used in this m

(2) Arc Ordering. The arcs emanating from gach nod (representing alternative .
planning decisions) are drdered, thereby defining a backtracking algorithm. -
The defauk ordering from a given node is clockwise, beginning at the entrance
point of the ingoming arc. This ordering entbodtes prior Judgments about the
refative simplicity and probability of success of alternative planning methods. ~

Arc’ Predicates: The basic arc ordering is supplemented by associating

conditions (predicates) with. arcs/ In the ATN -formalism, arc predicates are

employed to determine the legality of a transition. By examining the contents

[of the registers, these arc predicates can make .planning choices more sensitive
to the p context.

(4) Arc Actions: The comtents of the réglsters may- be modified by &ubm
assoclated with various arcs. The actions are performed if and only if the arc
is followed. ~ .) .
. N 11 .
(5) Linearizatjon Cycle:~The nature of nonlinearity is carefully examined, and, as a -
. result, a linearization cycle is introduced. This involves. the arcs from the ¢

CON J state to the NLC and NLD states in figure 2. If the arc from CON]J to
NLD is feflowed, for example, the M register is akered to reflect a non-finear
. " . N)

-
t

+

.
. » ¢
, ‘
\ Ty &
\

- »
Goldstein & Miller / ,

-y

J

M« Model

,

Me

Library

-

1)

PLAXN

Explicit (M)

S«<Library (M)

-,

NLD

LOOP.

Interactions (M)

"

*

¢

DEC N

Generic ' (M)

‘——;—————iﬂ REP

REF

(1) " ‘
LIN. Goals I} POP
’ - i1 -
. . ‘
Independent (M) : . LI Y

»

Example Registers:

Register M - Predicate log1c proble"f descrlptlon

Goals + Rest Goals
SEQ (G) «Solve ‘(MG X

Register § - Current solution (Plan denvatlon)

Register coals_Current set of subgoals

. *
Exa@le Conditions:

Generic M)

M e~ Reformulate (m)

L)

FIGURE 2 - A GLOBAL QIrw 'CF . PATN

Examnle Actions:

Goals +« fest Goals- 'Set register goals to.its current
| contents minus subgsal C .

A

e

+ Me—tLibrary - "'Is problem descrlptlon matched by
anything in the ansuer library?" .
- "Is the problem description repre-
sented as a generic element?!

Vs

'Sﬂ,xbrarv(\l) - "Return the solutior Zound in

’ : the answer library.’

t
‘ s .
i

11

<

AN €
4 \ B e
. 4 .
(2) .
u i o
. . * ﬁ
* . " REFINEMENT GO&IS&' First Goals

=

SuISanaq‘ pue FuyuueTd. paInloniaag

w»

¥

.

6

. 191K 9 uyaiyspion

) 4 . : »
Bmctur” Planning and Debugging 10 v ‘Goldstein & Miller
. v ! l- _)) ‘ . Y
I : : e ST T T
. - "Figure 3. Registers Used by PATN y
e | ‘ ' ' i
N == The probln-sncificu{n or ‘model.) y T * S
‘ - ey, ‘

‘ 8 -- The curient solution.

9]' . CAVEATS -- A ,lisi of wa\rlgn'os regarding possible ogori generated deuriag

* planning to aid in later debugging. =~ ° .
.&.o\ * " ADVICE == A 1ist of recommendations to guide ‘the plamner in subsequent | '
' decisions. Constraints on the order of invoking subprocmus.) :
s o - for omlo. ‘are recorded in this mutqr

GOAI.S’-- Tho ut of subgoals whise solutlo_lu are cnrrontly bondin&. ' L ,

\Y

G -- ‘The current suboo.l. uhich is about to be solved by a rocuruvo call to

PATH. : . L
-) *
. ,L - © .
., ~ ’
4 - L] >
~
. 2 .
. . 4 .
’ . *
] oo
-
D
\
. .
{ .
. , A ,
. > Ie
{
-
s -
'
.
~
.
. {') . ‘/
Q \

.
[y

\ X}

. »
¢ &
.

i—

: ..

.Str.uc'turet'l *P‘Iannlng‘and Debugglﬁg ‘ |

.
- £ .
-, . R -~
~ M .

" -

\5 deoornposltlon (as explalnpd 3h°fI|Y)

K tton order for subgoals #n?:ecurslvely solves for them ‘\
< - .
(, AT o .
The res s ﬁyam&pho;la is the augmented:transition network for pianning ('P_AT,N).\
- , ,) ’ » . s ’ : 1] L}
- * N) . ’ / ¥ s C-
22 Pﬁws le Node - @~ . 3>~ T
- - ’ Q-l ¢ s
. ,‘ Method consists enhr:fy in proporly ordermg and orun;mg the - thlngs to which , P
' " we should pay attention.’ P
) - 'Q Descartes, guvres, vol. ¥, p. 379. "Ru!os fonthq Dlrechon of the Mmd. .
N . (Rulo V), from.[Polya 1965, p 77} . . . -

PATN& first p'lﬂning choice lnvoh& selection between the ma jor cat@‘iés of nﬂptif icaﬂon. .

\

-

‘
»,
!

=, (6) Reﬂnmmt Loop% sequentlal refinement _loop Is Introduced which selects a

Py

decomposluon and -reformuhtion We now conslder how thls first part of the planning process is

-

represented in (he ATN (f lgure 4)’The arcs in‘the ﬂgure have been Iabelkd by small Ietters to

facmtate dlscumon Arc a’ beglns the }lannlng procets by setting M to the rormal descrlptlon of

NS

the pj'oblem Arcs b, c and d are the possible tr‘sltlom from the PLAN state. Phe default

| -
N &
t ,;

' PLAN to {DENil‘ll-'Y hu an arc oenstmnt Identification is pursued only If the’

problem model ﬂ %n be Lqund In the answeg library.” lf it can, PATN \:}uecute arce. Here, S,

the so|ution teglster Is set to the answer found In the Ilbrary The PO

"-h.,"

uses PATN to return

wlth anu’r There are no arc @redlcates on arcs ¢ or d because DECQM POSE and

* REEORMULATE fre lntended to bk lppllcable to any modet Sectton 23 pursues the dlscuulon

: br!oltowlng arc b.

@
~

k]

1 3

[

Goldstéin BAMiller

)

LY

L}

“r
‘9

»

‘. S
o‘ h I
L4 ——
. . . * M
. .
P
.

© »

-

Structured ‘leninglgd Debugging

. S

12

' - . D ok
- A% [4
_A‘. Y
n ;
Vo

-a

e’ inColdstein & Miller

-
R

N

' D) ’\/
» . ' s ' . 3 / :
MC LIBRARY ' IDENTIFY SeL¥BRARY (M) Eeﬁ// . ,
« b . R l\e4;\\\< N
rd t »
o' ‘) e
. T , ‘ - -
.(1’) . > . ,
L - -
, . !
< pe [
(2) . s~ o> .
PLAN . DECOMPOSE . [———— *** X%
c.- ' ‘ v
~ .
/
- . o~ ¢ .
(3)° ‘
. - 4 . ~
, ! - ,l_ . ‘ j ‘ >
‘ . &, .

QEFBRﬁbLA%;\f

4

FIGURE 4
"PATN's PLAN NODE

L J

. Sy
i 4 ‘ ,
"&’.

» - . -~

. Structur&d Planning and Debugging

L]

. Goldstein & Miller .

X 2.3, Problem dentificstion - o . '/
' * - From desire arissth the thought of some means we heve een produce the like of
! that which we asim at; _and from the llloughl of that, the thought of means to that -)
- - mean; and so continually, till we come. to some beginning/ withifPour own power. ’ '
K - Thomas Hobbn, LevlalhOn (Chapler 1), in [Polya 1965, p. 22].
5 .
Problem tfmaﬂcarm is the minimal technlque required l‘ solvlng problems: retrleval fram

+

a Hibrary of known solutlam (T his is not lo say that there are no subtletles Involved in designing

«

this component of a proceduhl problem solver) The power of the technlqunrlses l‘rom (a) the
extemlblllty of the llbrary, and (l,)’the manner in)hlch solutions are mdexed by thelr problem) N
descrlptlom tof acmme retrleval ih appropriate sltuatldhs

The answer llbnry is initialized With the primitives provided by the problem domain of

S
. a (nterest. descrlbed by thelr~efrects Each problem which is subsequemly solved is added to the ~/
T llbrglry.s The answer llbrary ther'eby grows in breadth with each successful problem solving

t
I

., eplsode As a resuk, a problem which could not have been solved in reasonable time initially may

bet':ome realistically solvable later, when one or more of its sub-problems have been solved' and
/

added to the library. , 4

TO develop problem identification rigorously, a precise description of primitives and problems . \

s required. For our purposes in this report, a problem is represented asa conjugtlon of assertions
about a set of objects, thdr propcrtm, and tlmr relationshtps. This formal problem specll‘ l#tlon Is
called the modet® This is a traditional method: although we use a different notation which W€~
find more convenient, our models could be straightforwardly translated into statements in the
.—-.p;edlcate calculus..l‘

. . . . : 2\
Entries in the answer library have two parts: a Pre Model, and a Post Model. The Pre

. . oo ' - /
Modetl is a/gggqlmctlon of assertjons whlt::zvrequls_ltes for the entry: the entry is not
3

guaranteed to work if these assertions are tisfied. The Post Model is a con junction of

assertions which describe the effect of the entry: the goal which it is to'accompllsh. {This
. -«

ic [y -

Structured Phvining and Debuggi'ng o . 0] ') ' Goldstein & Miller
.) < s ’ , -

npproacb is analogous to the definition oF o Jatm ln STRIPS (Fikes et al. 1972]) For PATN,

pmnmves and problems are indexed by their Post models on!y s - s (‘\/ "

&
To muume the use. of predlute Wwﬂhﬁg the answer mmry. let us consider the

)

,prlmmves for the Logo turtle wot(d The turt€i ls a gnphlcs cursor on a dlsp!ay that is moved

., pmmrlly by two mrnmands FORWARD and, RICHT The former moves the turtle display..in

-

=3
the diréction o;/ its current heading. Thc Iattcr rotatu the turtle afound its own axls Like any

\
groblem. the primmve FORWARD Is. dgscrfbed in the, answe: library by a Post ‘Modc/l that

CovTTR

- indjcates its ef! fects e, .what it can be used for, and a Pn model that stategits prerequisites.

. I PrcModclfor(FORWARD X) .

To execute (FORWARD X), two objz?t: must exist: a turtle 3nd o dt:pla,
T hese two objects must satisfy the relationship that the new position for the turtle
(as specifjediby the Post Modet) lie uuh}hw boundairies'of the display.

v

(EXISTS TURTLE) o ,’

(EXISTS DISPLAY) - :
l< |(XCOR (FORWARD X)) | Xmax)
(< | (YCOR (FORMARD X)) Ymgx)

AV Post Model for ¢FORW ARD X)
. M . - - T ’ "~ ‘
’ The result- of executing (FORWARD X) is that there exists a vector with'length
* X, whosé direction s the previous Iwadul"of the turtle and whose visibility is the

g - pmnmu state of the pen. (Dots (“7) are uml 16 indlicate the previous value.)

(EXIST‘S VECTOR V) —] v

“(a (LENGTH V) 'X) ° -4/

(= (XCOR TURTLE) . T o

. « (+ +(XCOR TURTLE) (= X (COS ¥ (HEADING TURTLE)))))

* -+, (= (YCOR TURTLE)

. (+ 3 (YCOR TLBTLE) (= X. (SIN :THEADING T[RTLE))H)
’ - (e (HEADING V) : (HEADING TURTLE))

(w (VISIBILITY V) ¢ (VISIBILITY TURTLE))
' } b

_ Pmblems are represented sifillarly. Flgurei 2 'nlshtngwell plcture." is a typical scene that a
Logo student mlght att;mpt to accomplish. by manipulatlng the turtle. This kind of project is

{
commonly undertaken by beglnners after ;wo to five hours of experlence with the computer

| SRR/
. .

'}

PR v
' ‘ v . v . v
Structuted Planning and Debugging 15 A Goldstein & Miller
;'\ , 4:1/ - .
: -
L.
. . . ~
1') '
‘b ‘_ [y - -
o q \ o . = —
e
’ !
. v |
£ |
’ L 4 * » |
. . , " [.
» ' \
- FIGURE 5- ST
! WISHINGWELL PICTURE . 1
~ AN ELEMENTARY LOGO GRAPHICS PROJECT |
’ e - R *)
.)
’ ‘3 B .
.. , D
’ r
A . / g
4 1y h
x4) a

Structured Planning and Debugging . ! Goldstein & Miller .
. - : '

-

[G 6olduein 1973, p. 23] An Englhh‘mtem’em of the problem might be: draw a wishingwell ‘with

:gun well and & trtcnpdwlm formal treatment of this problem, we uie a predlate
(Post) model of the desired picture as input to PATN. The model s exprcued in a umph

assertional formalism developed| by Goidstein [1974)°

HOOEL WISHI L
.- 'l PARTS ROOF POLE MELL m
. .2 TRIANGLE 1 JLINE Pd.em SQUARE WELL .
t 6. ABOVE

POLE; 6 ABOVE POLE WELL,
. 7- CONNECTED WELL POLE (AT PY
: : . 8 (= P*(MIDOLE (UPPER (SIDE WELL))))
N 9 (= P_(LOMER (ENDPOINT POLE))))
: 1@ CONNECTED POLE ROOF '(A¥ 0) . :
.H1 (s Q (MIDOLE (BOTTOM (SIDE ROOF)))) ‘

- - «12 (« O (UPPER (ENDPOINT _PG.‘E)%

13\HORIZONTAL (BOTTOM (S10€E .ROOF)

: 16 RIZNTAL (UPPER- (SIDE WELL)) ~ s
Later we attempt to show that t rpartlcular herce of model fs not critical: PATN has been /
B "designed to utilue 1 varjety of heumtiu for reformtflating the model If neczsar: _ |
- " For the blocks workd, t\\b%klnnmam to the owe-armed robot is (PUTON A 81, A
" andB a}e.b.locks.l The Pre Model "

Raf

"p?),. .

To execute (PUTON A 8), A bust Have & clesr to{:. in order to be
picked up, A must be at some knoun old‘poﬂtlom Aleo,* the top
"of B must have enough room for A,

. (CLEARTOP A) _
’ ".(ON A OLD-POSITION) ‘ ,
(SPACE-FOR A B) :

. .
v ’ - . \

The Post M odel asserts:) [\‘\/ .

Block A is" ;10 fongei. on ite old poﬂtion.u;on B. Also, the
top of B ie not clear. "

[T

(NOT (BN A OLD-POSITION)) <

« (ON A B) \, . }b
(NOT (CLEARTOP 8)) o
. B \ ‘
“ -

- .
-~ * v - 53
[.

¢ Structured Planning and Debugging 7 ‘ Goldstein & Miller

H

] <

For basic blocks world problems, the model is simply a con junction of QN relationships. ' For

example, a tower of thiee blocks would have the model:

L] . . -

(AND (ON A B) (ON B C)). '

I

g'.é. Problem Decomposition —

. Divide sach ptoblem thli you exsmine ui\o ss many parts as’ you can and o you
. need lo solve them morg sasily.

Descartes, OEuvres (vol. VI), p. 18; "Discours de la Mothode (Part 11},

This rule of Damrtos h of little ‘use 'as long.es the art of diwdmg - remains
unoxplamod By dividing his problem into unsgtlblo parts. the unoxpononced
pfobla‘-sotvor may increase his difficulty.

Leibnitz, "Philosphische Schriften,” edited by Gerhardt, vol. 1V, p. 331."
Erom [Polya 1965, p. 1291 ’ o T
] 1 '
Our theory of planning addrems Leibnitz’ criticism of Descartes by developing more

!
predsely the naxurrof dmpouuo;\thnlque: The planning taxonomy identifies two important .

methods: con amction and Apetition. The first type of plan is appropriate for achieving a goal
. . .

which is described as a simple con junction of Jpredicates (such as thé three-hlgh'Tower above).

The second plan type is appropriate for {ch}(ving a goa \vhich is described ‘as 3 particular

subgoal repeated some number of times (such as a Tower of arbitmy height).. In conventional

'prognmmihg\[gn@ages th‘ese blan types are implemented using sequencing and iteration (or

-

\

recursion), a'khough other ﬁhguage ogmimcts are poulbfe (such a3 pafallellsm).
PATN's decision to pursue CONJUNCTION versus REPETITION is based on the form of
< B I -

the model For our purposes here, a given sub-model is rextricted to being etthcr‘cxpum or mmc.

The former has an explicit list of parts. Wlshlngal is an example_ of such a model The latter

uses qumuf icatien to describe the ovenll model in terms of a."generic” part. EQUITRH md
EQUITRI? givenjgelow are two equivalent models for an équilatenl tmngle The fitst is explicit

while the second Is generic.

A ' ~

. / . 1‘
] ‘ - k’

Structured Planning and Debugging ! PR . IR Goldstein & Miller
. . ,’ . o ’ - < PN L
MODEL' EQU] TR11 © % MODEL EQUITRI2 e
.1 PARTS S1 .52 S3 R1.R2 R3 '\ 1 PARTS (S 3) (R 3) .,
. 2 LINE S1; l.l'lf S2; LINE €3 2 FOR-EACH I, LINE S(I) o
3 ANGLE R1, ANGLE R2, NGLE \ 3 FOR-EACH I, ANGLE R{(I) .
4S5l «e852s83 ° . 't 4 FOR-EACH I, 1=1,3, . = @ —_
S Rl = R2 « R3 v . SU) = S(l+1 MO0 3) T >
6 CONNECTED S1°S2 - ﬁ 5 FOR-EACH I, R(I) = 128 .
7 ‘CONNECTED S2,S3, R " 6 FOR-EACH I, T
8 CONNECTED S3 S1 - - CONNECTED S¢i) Stl+1 mMOQ 3)
ENO | ¢+ END ' I j__

’

Because ol“the slmpllficallons we have introduted, generic models can brtrlvlally .
dlsuntulslled from explldt mldels by the presence of the quantifier “FOR-EACHY In the general |
case, models could be arbitrary logical expresslons with mlxed existential and umverul}
quantification. The ‘elementary blocks world taslu and Logo picture problems which we are
oomlderlngfdo not require this complexity. (A diregtion for future research is to extend PATN's
‘deslgn to ha;tdle these more complex ;l\roblem'descﬂptlmxl a T) l‘E

The AT:N representation for this declslon is illustrated tly fl‘gul'e‘B Examine the .-

DECOMPOSE nodé. The transltlon to CONJUNCTION is made only if the problem is
described by a model with explicit pam such as EQUITRII or WlSHlNGWELL I{ the model is

s comtructed From a generic descrlptlon as-in EQUI'I"RI2 then REPETITION is selecteé Thus,'in ’
"temu of arc predicates, the ahematlvu at the D COM,POSE nocle::e mutuallyh?xcluslve It ls \)r?ﬁ;

. 1.
possible that a REPEATION plan, for example; might eventually bs produced for a’ proble?

’

®

initially deurlbed by afexplicit model. However, thls would occur only through an intermediate
which EQUIVALENCE converted the original model to generic form.

REFORMULATION

Tlm in tGrn would aMow a recursive all.to PATN in which DECOMPOSITION would then
choose REPEPITION. ' ' ' -

7 « x

v . fw)
v‘ o L] N ° . "
\ R
Structured Planning and DeB/ugging 19) - -Goldstein & Miller
Y - —— ——— - - - .’—w - “-—— = x
™ [
oo S |
rd P 1,
EXPLICIT (M) :
CONJUNCTION .
= — oN K - |
¢ L |
, .
.) |
— ; i
h ~
hd 1Y 'éb
S DECOMPOSE - X
lJ
, N 1]
| /\ |
g ! B A 4 . L &N
! '} /(/" < < ‘ .
i
: : GENERIC (M) .. REPETITION -
13 c “‘ '
l *
A
. g
; ‘v FIGURE 6
X PATN's DECOMPOSE ﬂODli:, 5
0‘ "*;
v Ll -
N 4 ’ -
\.
N
' ¥
. 2l f

Structured Planning and, Debugging 0 " Goldsteln & Miller |
J . ! \ -

S. Decor tion by Conjunction
For con junctive plans, PATN's next design decialon AT whether the con Juncts are to be treated
\ izpm«mly or, akernatively, whetlier notice must be uken of intdractions. For example, a lineer
pRYy far the wishingwell of ﬂgure 5 would solve for the three sub-pictures - ROOF, POLE and
" WELL ~ a5 seplrate subprocedures, each comtructed Independently of the others.. A onliner
phan mlght attempt to take account of the potentlll interactions between POLE and the other parts
- modlfylng the spedﬂcmom for ROOF and WELL so as to start and stop in the middle of a ’
side -- facilitating connection with the POLE. Homver. slnce'Ynh an optlmlutlon requires that a
gmn subprocedure Incorporate kﬁowledge regm:llng the implementation of Snother subprocedure,
8 linear plan would not do this. : -
- Let us be more preclse in our claulflrauon of nonlinearities. The goal is to construct a
pfoudure to aommpmh a con j\mct)on of assertions. Nmanumm In decompositidn are those that
add constraints to the design of the subprocedures. Nonlinearities in composition (i.e, in putting ~
) the parts back together) are those that add comtqlnu to the deslgn of the superprocedure. .
. For the wishingwell example, i:dding the constraint to the design of the subprocedures for the
4 "ROOF ‘and WELL that they start in thé middle of a side is an example oQ nonlinear
decomposltlon Another example for the Logo world — whlch lnvolves more than optimization — ‘o«
occurs for problems which npeclf/y:hat one object, X, is to be lNSlDE another, Y. Y must be lafger
than X, If<the required topological rehtlon is to hoid. Thlr means that a linear decomposition that
_ignores the lNSlDE relation and draws Y to some default ;lze Is likely to fail. The correct
approach is to add a SIiE property to the ducrlpuom of ‘both X ::d Y. s ' -
A nanltnmr composition adds constraints to the design of the superprocedure For the blocks
world, the common form of this nonlinearity is the exluence of -a pamcl ordqfng on the - ‘

' :qtmm‘l which the mbpal: should be achieved. The orderlng constraints arl:e from the use of

some temporary gesource (such a3 space), by one subgoal, which %emtpally used in a conflicting '

A\

L 4

Structured Planning and Debugging 2 . . Goldstein &M Ille>
‘ ‘ . \ .

© way by another. An example discussed by Sussmah [1973] and Sacerdoti (1975] is-the construction

% <, a A ’ . .
of a tower of three blocks, Le. (AND (ON A B) (ON B €17 The shwer must be bullt fram the-

bottom up if the subgoals are not to conflict. The constraint (BEFORE (ON B C) (ON A B)) must

be added to the design of the superprocedure. ' , .
oA - ’

The.same kind of nonlinearity can arise in ~ Logo animation. To create a “snapshot” of some

Lo , ,
picture which can be~dlsplayed an?where o;\ the Screen, the picture must first be drawn and ~

»

"photographed.” This process called “snapping,” involves first drawlng t{n plcture‘ next snapping
it, and then ‘erasing it. Now the erasure is of an entire screen reglon If another shape is present it
wm be destroyed. Hence, no shapes intended to appear in the final scene should be pfesem. Thus,
a vonstraint mustk be asserted that requires that the snapping subgoal be aciﬂeved before any

subgoM{w a permanent shape in the critical screen region.

Nonlinear decomposition composition constraints are not” mut exclusive. A given

problem can exhibit both kinds of interactions. In the hext sub-section, we take actount of tl‘ by -

including a cycle in the ATN that progressively linearizes each interaction detected in the model

g

1

2.6 PATN’: Subgraph for Conjunctlon

Figure 7 shows PATN's subgraph for chunctlon Arc b from CONJUNCTION to
LINEAR decompgses the model into sub-models that will be solved for independently by recursive
calls to PATN. This is done a¥ follows. Two clhssgs of sub-models are created. One class
describey the individual ob Jects. The second class describes interactions between éalrs of ob jects.

¢ For each objec-t X1 in the model M, Mi is the sub-model composed of all the
assertions in M, describing properties of Xi. ’

) o For each pair of objects Xi and X in the model M, M1, is the sub-model
composed of all the assertions descritiing relations between Xi and X .

- Wé speak of accomplishing ‘the ob ject X{ described by Mi as a main stép in the overall-procedure.

Relations between two ob jects'described by Mi) are accomplished by ‘interfaée steps.
’ * . 2

.

. Nt k
- , — ___}_'__ ’__ - " ‘
, .
LY
| | R xyy) ‘ o
* M, . o« . .
' 13- 173 'LINEAR .. ‘
| — > .
N~ e
i (3 :
i A} . ' »
| CONJUNCTION - -
i ‘ . L4 ; -
i o .
(1) k2) ‘ ‘ .
4 MeM A Po(X;) A Pp(Xy)
NONLINEAR | ~ .
A Neo(M) . —) DECOMPOSITION
C .
. £
] S
N - 9 €
i - . - ‘ \
¢ . v .
NONLINEAR : .)
' - - d] g
[y / "
> e 7 l ’ -
- FIGURE 7
’ . PATN's CONJUNCTION NODE .
57 “ . , e
[. 2 .; ~ .
r\ , 25 (
(| . A

Sur88nqag puew Sujuuerd pé.xn::m.x:s

’

(44

IFTITR § UT2aISPTO

Structured Planning and Debugging - 2 ' ’ Goldstein & Miljer
As an exampl‘e. a linear decomposition of the wishingwell is:

* Ml: TRIANGLE RW:
"HORT ZONTAL' (BOTTCH (SIDE ROOF))

G M2s LINE POLE, R Lo

M3: SQUARE WELL;
HORIZONTAL (UPPER (SIDE' WELL))

M1,2: ABOVE ROOF POLE; -

co ONMECTED POLE ROOF (AT Q) o 2
. (-, (MIDOLE (BOTTOM (SIDE- ROOF)))) . ‘
«'Q (UPPER (ENOPOINT POLE})). :

© n2 3: ABOVE POLE WELL ' ' N

;- CONNECTEGE-MELL POLE (AT P) T e) \

" (= P. (NIDOLE (UPPER (SIOE WELL)))) ° . ; E
, (« P (LOWER (ENOPOINT POLE))). ’ CN :
~F . PR ’ !

» [}

: We deﬂne linéar :equmnal reﬁnmmt as solution by the followlng process:

" (1) organize the mainsteps lnto a sequentlal procedure, chooslpg an orderﬁg that samf les any -
linearization advice; .) -

(2) solve for the rr;alnsteps independently;

(3) solve for the-interfaces in the order in which they occur in the procedure: -

»

A linear decomposition is valid if a co;respondlng sélutlon via linear sequential refinement is ‘

’

possible. Implicit interactions can invalidate a linear decomposition.

»

- The linearization cycle consists of arcs c.f>and ‘arcs dg. These arcs attempt to lmear!u the

model by checklng for known types of ln!enctions The nonlinear decomposmcm node adds

properties to the descripﬂons of: lndlvldua! subgo,als that take account of interactions. The

_ nonlinear composition node sets an advice h-?\ner that will be accessed by the SEQ operator
' (exphlned below) in comtructing the superprocedure.] o,

/
NLD is a con Junction ‘of conditions (predlcates) each of WHG:he $ the mode! for a

particular refation or pattern of relations that have nonunear comequences for the decotpposmm. -

’ .

M . .)
. 26 f
. . - -

. R
c ¥ : -

stmctund p?hnnln(“and‘behbuulng‘ o ; SR Goids;em & Miller
If m,pt lhuf_pndlam detect their Kind of lntmctlon properties &e added to 'the descrlptlon of
Indmdull ob Jects tbat\qgllcltly ’ncount for thc dependenq The ob jectlve Is that with these
nddmoml pfopeftlevn lndependem treatment of the modified ob ject speclf Icatlom will be
qul . o ‘ - : ’

’ < ~ “ , .. :

_ For example. as dlscussed above. lNSlDl:'.'is :rplatlon{n the turtle world that has
muqyences for the properths of the ob Jects involved. Thus, NLD- INSIDE checks for the '
existence of (lNSl(! XY in tlp model. If found, SIZE propertld, descrlblng X in terms of Y,
or Y.in tcrtmofx or both, areaddedtothepropemesofthqeobpcu Themulut!m an
Independent solutlon for (the revised versions of) X and Y vlﬁ"‘n& prevent tHe INSIDE relation
from being awompilshed , e - L d

NLC checks for pattems in (e model tiat have connqumm for the eventual mtm S

the sgbgo.ls If such propertm are detac“hen explicit relations an\qded to take, aewumnof

snapshots and sbows them. lf. detected, (BEFBRE SNAP DISPLAY) is appended to the contents of
the ADVICE register. sunna'rly. fof the blocks \;Br_lq.:NLé-T,c_J'wm adds (BEFORE (ON BC
(munmmvrcz i . oo) - ‘

| The N}.C a\nd NLD comtnlnts arise frow(sources. The first is that they may be 0O
llpplled by the creator of the Plannlng AFN. Alternatlvely. Tollowing Sussman [19‘73]. PATN an
bc desi ned to mmmarlu bugs by clmlfylng the nature of the nohllnearlty md addlng it to the
NLC ’%d NLD/commlnu In these terms. the acqulsmon of. y IGN least partly, the growth c#/
more elabonte recognition rqutlnes for Unpﬂcit interactions. Susiman cafled this process the
compilation d critics. The tror&lcal advance of Structured Planning over.Sunman s HACKER

. plridigm ls o wake clear -um thgsqfirltk.s are slmply additiohal arc comtnlr}/ the planning -

>

transition m hey are nosdifferent in klnd from any other planning comtralnt&

s .

To summarize lmplldt deﬁmdmcla are handled. by the ATN': nnurlution loop. If the
R ! \ Lk .> . . v rds

the Interactions. “An example is NLC-ANIMATION that checlu for a Logo animation that creates -

[4

¥

Structured Planning angd Debugging .2 ’ Goldstein & Miller

.

o problem is identified as involving some kind of noflimearity, then the model or advegisters 3 .

modtfled to make the interaction explicit. Processlng then returns to the CON]UNCTION node
- T

Further processing of lnteractlons occury untll no more are detected Control then passes to the ¥ -

. LlNEAR node for actual décomposition. 1f a'n interactiW stil exists. but has gone undetected,
subsequent debuggir?g, will be necessary. -

4

/\ Composltlon by Soquontlel Reﬂnomont

Once the nonlinearity loop has been oompleted PATN wo\t}d go on to solve the individual
subgoals and compose a compiqe solution. In thts section, we discuss a composition technique we

term sequential refinement. -A geoeralization of this approach, net refinement, based on thQ
s o ‘

procedural .net representation for prograrns.'is\gscussed in section three.

Figure 8 illustrates the ATN subgraph for the sequential refinement cycle. The basic process
e : %

LY

is cycling through' the subgoals identified by the linear gdecomposition and solving for each by
. w -
recursive appltcatlon of the ATN. Arc b enters the sequential refinement loop. The solution

\ register S is set to a sequentlal superprocedure for the mainsteps Mi and lnterrace steps Mij ..
<
tde;mfied the decomposmon The SEQ operator on the arc chooses an order for this

. superprocedure that,ls -consistent with any ADVICE recorded by the Iineariution loop SEQ ..

might also bring addltional crlterla to bear on the organintion of the superprocedure. such as o
4 -~ A /

imposing an order that mirrors chalns of predicates in the model, such as X connecteo to’Y

connected to Z-This often simpllries interfacing.

i

_As an example, for the wishingwell problem, glven the Mi and Mij specified above, a
plausible sequence of mainsteps would be:) ﬁ}.

. . T0 W ’) - . e
. 18 ROOF) e
- . 20 POLE
3 .’ 38 MELL ¢
’ ’ ' ENOD N * s ’ -

--/ .
- - P4
, <4
}
- .
G <+ First Goals
i ,Goals + Rest Goals
- - | sEa(6) « pLAN(M+ G)
S +SEQ{Mi, Mij} . g
—4 LINEAR < SEQ v
a . Goals+ ORDER+{Mi,Mij} 4 c
b &
N , Goals = Nil d *
[- i' A
. POP S -
FIGURE 8
SEQUENTIAL REFINEMENT
29
o . | o 30 .
AN .

w -

’

>
v -

]

L3

L

9Z. Suy88nqeq pur SurUURT4 PeINIONIIS

I3TTIN 9 UFISPTOH ~

\

-

1

7 e

Structuted Planning and Debugging . Goldstein & Miller

The ORDER opentor on arg b of ﬂgure 8 chooses the sequence in which the sub-problerns

: wa
are solved This may not be indeed, probably is not, iden to the order of occurrence of the
sub-problems in S. A criterion for the order of solution, for example, is to solvé.for the malmteps

before the intérfaces. Another criterion Is to order the majnsteps with respect to their complexity.

./ Lookahead (section-three) can estimate this. Fr the wishingwell, it makes sense to solvé for the

POLE~f frst since lookahead can’ ldemlf y‘ this as a prlmltlve. Crlterla for ordering the relations

-

can exist as well, although the default ordering is usually the order of occurrence in the procedure

~ Arcc !‘a cycle that recursively solves for the.subgoals in the order selected by ORDER. The

* solution for each subgdal is .attacheg to S at that'subgoal's node. The solved subgoal-is then

deleted from GOALS. When all :ubgo:els.have been solv[d.,xhe cycle is exited via arc d. The.
ATFN pops, returning the sohution. ’ A , ‘

For increased effectlven)eu‘,‘ PATN’g tnitial Logo world ens;vef library would cuntaln both
prtmltlves with thelr assoclated models a3 well.as schemata for accomplishing particular model
relatiogs. Thus, if the sub-problem is to:achieve (ABOVE X), where X and Yiare mainsteps
th'at have aiready been _;olyed. then the answer library would contain specific procedural
knowledge for designing an interface, relative to the ae!jacent mainsteps, that satisfies that
refationship. The nature of these imperative schemata is _discussed in (Goldstein 1974, Appendix
D] We do not give details here. - - oo

For the wlshlngwell. the mainsteps for the ROOF, POLE and WELL would be solved first.
Then, pursuing the defaukt order for rehtionS. first the interface between ROOF and POLE and
then betweenm—;n?WELL would be cunstructed Figure 9 shows PATN's solution (as hand-
simulated by the authors) and the sequence of ATN states involved In its generation. -

Besides generating the program, PATN would generate its annotation, an hlerarehlcal trace of
the ATN mt\es passed thr?ugh iu generation. In this derivation tree, each node has a cop'y of the

[

values assigned to the registers at the time the-node was generated. This serves as a description of

‘e . . . -

- 31

e

.
T

- Structured Plenning and Debugging . 28

L)

,pé‘ﬁm;;)' .

4 -
5

. .

. %’- ‘ . .)
+DECOMPOSE
~CONJUNCTION ‘ S

Tt

_' +LINEAR N ;T
. “sseQs =
I : > .
*POP(S) [
WHERE S IS: . . - ‘
Toww T Ly -
10 ¥, « TRI '+ ROOF _
120 My o + BELOW, CONNECTED - «
30 M, « LINE + POLE t e ‘
0 M, + BELOW, CONNECTED « - ’
(4
- 50 M, +SQ A WELL -
) v \ , » . - .I
- \ Al ! ’ v .
o ., PIGURE 9e :

. i v * ' 4
SOLVING THE WISHINGWELL ‘RROSLEM

— = . ___-__’_._._.._:J».i..__..._‘___.

- .
.) - '
. ~
[N N
‘ 4)¢
’)
@ ‘3“ 1)
\ .o :
. . (v
L]
~ N «
L
. P
~

¢ . . ¢ .

_ Struttured Planning and Debugging® 29 - . Goldstein & Miller

(/~

' the purposes of the code in the form of the MODEL assignments, ADVICE for future

v

. modifications and CAVEATS regarding possible bugs. Caveats are generated by the planner

when making possibly erroneous heurlstic decisions; these are discussed in a later section on
‘debug'gmg. The derivation tree for the wishingwell procedure (abbreviated slightly) is illustrated

! . L (
in figure 10. . _

M(ggodllonby&opollllm ' / l B

Before coricluding thls section, we briefly ‘consider other planning t

hniques which were

-

lllmtrated in our taxonomy but have not been elabomed in the discussion 50 kar chcmum plans’
correspmd to the problem solving method of structuring the solutlori in terms of elthér the same
goal applled to simpler argumelm (recursIVe plam) or another simplet goal repeated some number

of tlmes (round plans). The former technique is more_powerful than the lajter in the sense that

every rgund plan can be accomplished by means of a recursion, while every recursion cannot be.
. \

accomplished by iteration (Hewitt IO’I21 Bul Round plans are differentiated because the problem

‘formulation’ which would trigger them for PATN differs l‘rom that of Recurslve plans In the

.

-

rormer case, the problem P is described as n repelltlom of problem Q, where Q}P, whlle in the

‘latter P 1s dexcribed In termsof reputed occurrences of problem QsP.
*Round plans are the natural phnnlng ter‘.hnlque for generic models. We intend to handle this
l\n the ATN via an arc opemor ROUND that l‘ormuhm 2 sub-model for the generlc part and
advice for the composition requestlng an iterative control structure. Having d.ecomposed the
problem in this fashion, control would-then pass to the Sequential Refinefnent Loop. Figure il
itustrates this subgraph. '
EQU[TRIZ was an example ol‘ a2 generlc model. The ROUND ope1ator wpuld lsolate
subgoals for accompllshln a SIDE and a ROTATION. The repetition advice would be l‘or three

— P
iteratioris. The resuk wguld be a program of the following form:

-
-

O

o

:

’
\\'\ ’

A

» . - S Vv
. . _
r——_._- J N '\._ _ ¢ '
’ -
w o . . FIGURE 10 \
— . | .
. * ABBREVIATED HIERARCHICAL DERIVATION TREE FOR WISHINGWELL _ .
[' o~ .
. » ' . . \ .
- ~SETUP...—ID—PRIMITIVE 'RIGHT 90
-) i .
) / L , - _[Usrs-cooz SQUARL 10C -
, ;—,w'xms'rzp (WELL) ... - ID= DEFINED— ;op oo o _-.GET SQ~FILE
[-)
| . . . -MAINSTEP. . .—FORWARD 50
., : INTERFACE (BETWEEN WELL & POLE)...-DEC..-ALIN —SEQ GLEANUP. .. —LEFT -90

"
|SOLVE-PLAN-DEC-LW-SEQ ’

-

AN g

3

+

-

. Su88nqag puew Bujuuerqd paanioniig

ot .

* _ PORWARD 10T

I-MAINSTEP. (POLE)V? . -I£7PRIMITIVE

" ETYUP..,—— LEFT 90
' . ' .) Vo
- INTERFACE (BETWEEN 'POLE &+ROOF)...-DEC...-LIN— INSTEP .. . —FORWARD .50
{ - - P - - .
: LEANUP -.. —RIGHT 120
> ? , ;
i , .
4 | o A TRIANGLE 100
— ... —DEFINED... * \
\M;INSTEP (ROOF) : . ‘
,‘ R . \ »
4 X 35
¥ 4 j . ’ \

|

H

13ITFH ¥ uyaysprod

>

' ' N
: Structured Plananing and Debugging 31 : . Goldstein & Miller
. -) ~—)
” . .o ~
v , . LI B |
- .) (‘;
S -
2 ~ \ J
‘ v
. /) .)
[- 1N
[’ } T ’
) Goals+ROUND (M) . .
REP . - 3} ROUND - f=——-'-=>| sEQ .
' - .
/- -
o ' '/ h
[} - !) ’
o : ‘ ‘ PIGURE 11 , ¢ .
- ROUND PLANS o P .
i ' ‘ .
2 . v s -
; -~
) “‘ A

[

.

Structured Planning and Debugging 32 g Goldstein & Miller ’
. .. Ul
.TO I ‘ : - -
10 REPEAT 3 20, 30" .)
20 FORWARD 1060 " S _
30 RIGHT 120) :
3 , . . . ‘ ‘
2.9. Problem Reformulation - . B

S

When a problem arises, we should be abje to see soon wh_ether' it will be
~ profitable to examine some other problems firgh snd which others, and in which
order.

Descartes, OEuvres (vol. X), p. 381; for the Direction of the

- . Mind® (Rule V1), from (Polya 1965, p. 3

g »The final ca’tegor;of plans which we comlde.nsms of techniques for problem “
reformulation! The importance of th‘ege methods can be understood by re'oognumg that all of the
problem solving ‘strategies mcm;oned above are triggered by pattern matching against the
des::rlptlén of the problem. The reformulation techniques, however are designed to alker the
problem descrl‘puon-. PATN would apply these reformulation techniques should solution by
Identif ication or detsmposition fail. Ty@action s to reformulate the prob description, and
th«; to pass the new ciescriptlon backio the Planner. '

Oyr tnoritomy includes two reformulation uzchn!c;ues.'2 The first attetopts to find ah
equivalent ‘problem that will be easl& to solve, and whose s;ﬂutlon will satisfy the orlgln:}fsk.
The second searches ;or a unplt]lf:cum that can be ysed as a stepping stone to so!vlr'lg the original
provlem™ , o |

The difficulty in applying reformulation plans lies in recognizing whith reformulation _\vlll
"aid the solu-t/lon progress. fqr equivalency, we envision PATN as capable of reformula'tiom that
move bawem'dmrlﬁt!ms given in terms of mukiple ob jects‘ﬁ equivafent descriptions in terms of

a singfe generic ob ject, thus changing from a Conjunctive decomposition to a Repetitive

decomposition, or vice versa. An example is moving between the EQUITRII and .EQ_UITRH!

triangle models. Another reformulation technique involves re&rouplng the parts. Figure]2 shows ~

[}

A ' f" ‘

Structured Planning & Debugging 33 Coldstein & Miller /

y— - -

|
. B B :
| i
| a B I .
. _ — roof
tree __|
N ——pole
) i B x
, B -
- well —) ——well
‘
o ¥ FIGURE 12 |
® REFORMULATING THE WISHINGWELL IN TERMS OF A TREE l
- ._——-:-* - - r
’
N v
- -
L]
N
) _]

¥

Structured Planning and Debugging M - Goldstein & Mﬂler“

an exampié of p;ns regrouping f'or the wishingwell. The virtue of regroup.l‘ng is that it might
produce a model whose parts are aiready iIn the answer library. | . ‘

d'Fm' Slmpl.mauon plans, we have analyzed elementary techniques based on generalization,
speclalluthn. and analogy. (a) SPe:hMutlon typically involves instantiatirig variables in. 2 model
by specific constants or ré;trlgtlng their range. (b) i:ene_nuum;n would include the op;:oslte
processes. Other non-equivalent refor;nuhtlons ln;olve adding or deleting mode! predicates. (¢)
Analogy often amounts to first generalizing and then specializing. Thus. for the Logo world, if
the original mode! were for Mffangle with sides of a certain size, gener’uutlon mlght produce a
model for a polygon, or for a trhngle of a,rbltrary slze Anabgy might then respeclallze toa
square, pefhaps or/n_m(ngle of another size. The virtue of the;e reformulation technlques is the
'poulblluy for reaching a problem-descriptivn whose solution is lmmm We envision that ‘each '
technique would have associated with it an Inverse mapplng on the solution so that lt can be

P
mapped back to suggest a plan for solving the original problem. * .-

Structured Planning and Debugging) , — Goldstein & Miller -

3. Searching for the Plan

1

If you see sbvoral plans, none. of them too sure,.if there are several roads)
diverging from the point where you are, explore .a bit of saach roed before you
. venture too far along any one -- any one could lead you to a dead end. o

Polya, Mathematscal Discovorz, (vol. 1), p. 27.
. o = - . : -
The most straightforward plan generatlon algorithm for PATN s to atlempt arc transitions |
- in depth firse. order, with akernatives stored ona backup list: If some plan leads to a subgoal that '
cannot be solved, fallure occurs. Control backs up to- the more recent cholce point, and plannlng
resumes by pursuing the next-Ontried alternauve for that choice point (provided that it is allowqr
by any arc transition constraints which may be present). - d - *
« * This depth Ir'si search would apply to b:th explicit 'and implicit cl)oﬂlce points in phnplng.
An example of an explicit choice is'the decision between decomgosition and r_ef_ormu‘latlon for a
‘given problem.. By implicit choice point, we mean those decisions :which arise which are not
represented as mutually ’exclusl_ve a‘rc transitions M-Ab\A'I"N. lmpllplt choices occur in identifying
past solutions (more than one previously solved problem may match the Post model for the current
probiem), creating super-procedures (there may be more than one reasonable sequence); and, in °
genenl whenever knowledge on the trangition arcs sets regis ‘}nd makes decisions. We have
dlscussed arc orderlng and predlcatea assoclated with the transition arcs to Irect explicit choices in
the planning ATN. For each impllclt decision, a slmilar approach is possible. The declalon
process locally determines the order of the akernatives, pursues the first, and pushe\ the remainder
_onto a failure stack. Thus the overall phnnlng process would remaln a depth first search. .
Uhtimately, all plans which PATN ‘I capable of generating would be trieg in thls mode. Of’
course, exhaustive backtracking search is not a practical planning technlque. One way of

decreasing aimless search which has been glxuss.cd is to provide additional constraints on the

transition arcs. This section outlines further techniques germane to resolving planning decisions.

.
o -
. -
. . Lt
~
)

40

4 .’

" Structured Planning and Debugging’ T "Goldstein & Miller = " -

R - . - .
< N o 4 . .
'
i . . .

Fhese techniques opente by superimposing an executive search process on the ATN so as to

~ improve the oﬂ‘lclency of plan genentioq "The technlques represent four milestones in the | e

" development of a successful phnnlng theory: These lmprovements. destgneq to make the phnntng —

i pfocqss mor ect and less susceptlble to blind mrch. are: '(a) lookahead (e.g., [Aho &k

- - Ullman-1972)); (b) least commtmgt (g [Sncerdotl 1973)); (c) dlfjcrmttal’ diagnosis (eg.- ‘
G - [Rubin 19751) and (d) lmm libraries (cf., mcrops' (Fikes et al. I9721 well-formed substrtng tables .

[Kuno l%?]. [Woods et al 1972)). We lntend to incorporate these stnteglu Jnto the basic EATN

Pmblem solver, folbwmg its initial lmplementatlon . \ " : .
. . . . ’
. ':;.1 tookshesd N 4

. Loohhead consists of a llmlted search of available ﬂternatlves wlth usoclated statlc
"‘ phusibmlty cﬂtem for judglng the probable success of a-given non- -terminal state. An elemennry
_ bix “Vseful form of lookahead tould be accomplished in,PATN by pushing the planning proess

- §
forw:rd some f ixed nurhber of recursive levels, looklng to see if a solution arises vla identif lcatlon
Thus, a de;:om that can solve most of its subgoals in tems of the answer |Ibrary would be

s ’ (v
. @ prhcl‘emd toa decomp%wn recursively apply decomposition techniques to its subgoal&

) ln ef fect such lookahead attempts to select those plans that accomplish the oat with a minimum
'. .) mmblr offrecurswe calls to the probleni solver. ': \‘ |
> l-'or exampk reconsider the wlshingwell scenario. Suppose the answer library contalns, nm'
TRIANGLE progr:m but a TREE procedure Lookahead couid prevent the planner from blmdty
- pu'rsulnga decamposition in tertm/c')f ROOF, POLE and WELL, over a reformulatlon that‘
. describes the’wlshlngwell as 2’ TREE and a WELL (figure 12). This wosxld be acgompllshed by
' otnervlng that the reformulation produces a p?oblcrn 'desi:r‘l’pt f whose decompesition’ can be
:’. tly~solud' by means of the answer Iilmry. whereas the standard- deTmposltlon results in two-

[N ™~
e vals (the ROOF and the WELL) that require further analysls

[

L4

1 . - ’:

-

I

Structured Phnnl.ng anmqgglng‘ -8 doldstein & Miller

v

Lookahead could be l\lglememed in the usual fashlon (see, eg., [Aho & Uliman l972]) A

/ !qutlc phuslblllty function might assign a plausibility of one to problems that can be solved via

ind that NOAH its itself to an order for placing the blocks..

.tdentiflcatlon.“ing zero to problems that require decomposition or rcformulauon. Lgokahead ’

would push the analy;l:s through a fixed number of levels of recursion, and then estimate the
4 s
dynamic plausibility as the sum of tlie‘statlc p‘auslblllEm of the subgoals appearing as the tips of

the probﬁm tree, divided by the number of these sybgoals. The division serves the purpose of

* resolving the fo"owlng situation: glven two situations in which the same number of subgdﬂ(ne
’
/‘ * ~known, the probfem tree with fewer unsolved subgoals is to be preferred.)

A refinement of this ;;lauslblllty computation mlgl;t assign greater weight to those plans that

Kl

.
A

lad to identifications for more complex subgoals. “The complexity of a subgoal could” be
approximated by s}ntacuc criterla such as counting the number of predlcites involved.
. h g
v o

gl
~ 3.2 Least Conitnent . |

Least commitment is the problem ‘wlvqu. technique of avoiding premafure decisions. It is
elegantly developeg I;y Sacerdoti (1975] in the form of pfocodu(al nets. Sacerdoti observes that

some bugs in planning can arise from prematq‘e‘commltment toa partfuhr sequence, when the

available evidence does not in fact requlre such a determination. His solution is to represem the *

\ program, not in the usual sequential format, but as a net 13 ‘) b L

B Figrre-ls lllustrates a procedural net for‘bulldl a tower from three blocks. Sacerdoti's
planning system, NC')A'H.' prm:eds by successively exp::?fng subgoals, committing the'system toa
sequergce only when a conflict in orderlng:risg. At levels 1,2 and 3, no\tfrde.r' has been chos;n for

- the sequence \cc;xnp’llshlng (ON A @) and (ON B C). It is not until aft'n' criticism -at level 3

‘e

This teéhnltiuq could be incorporated Into PATN b)g replacing the sequential refinement loop

with a net nﬂnmnt'“ cycle (figure 14). Instead of SEQ organizing the subgoals into a sequential

AR 4 . e
. .

/

Structured Planning and Debugging 38 " Goldstein & Miller
1. Ceveu ’ — | L
] - Achieve (AND(ON A B)(ON B C)) -
(a) | !
VE)
LEVEL 2 MAchiove (ON A B)\ A
- s J A .
‘ . 7 ‘
Achigve (ON- B C)P”~
[]
(b) ’ '
TA-740622-14
. L3
. LEVEL 3 t 1 . Co ..
"i# (Before Criticism) Clear A N 3 ' - "
) B s J Put A on B |
lear B , \ ’
2 .
S 4)) J
: - 4 .
! ' . Clear B 6 *
K s — . Put B on C |
' V ‘
" Clear C . \
5 ~ - |
¢ (c)
_ | TA-740822-15
" LEVEL 3 - corn] e
(After Criticism i > Mt ' - -
by Resolve Conflicts) | ‘S J Put A on B
”
g * S + ‘ - ., 1
. Clgar 8 '
il .
. S J Put B on C .
Clear C i
) n
l » (d) . !
s TA-740522- 16 : .
.' * - FIGUSE 13 §
succsssxvz REF INEMENT OF A PROCEDURAL NET FOR BUILDING A TOWER :
, 'FROM [SACERDOTI, 1975, P. 15]

——tp—

.43 ‘ =

’ 7,') ; ‘ \ M . ’ .’7
. " N :
- ‘ .
- . n
PR - - — —— - — _3_._;__ - - - - - —_— x g
V4 6
¥ (a3
[v 5 N
¢ \ . g'
4 ’ ., ‘
\ | 3
- E
LY ' i p
%)
' ®
b 4 r
- ' C . S« CRITICIZE(S) . . g
‘/ [} \ - . - *
1 1 d . g g
| p— - - w
! .4 - w - % \
. ®
[. ,'
. e . ‘
x ‘ > . ., .G +« First Goals s
’ : o ® ’ , Goals +« Rest Goals .
] — Y unear | s em‘:'r{r_di,u?',;}» ’ -NODE_(G) ~PLAN (M G)_)! CRITICIZE .
] M "th
1 ‘éals«qu)ga ,{}T{'\' £5} c ©
: RSN ¥ = .
‘. V‘." N “ ‘) = _ ‘ :
' 4»' . £ . . v
.. ", 'p Goals=Nil} e ' :
g ‘ Y. . T ' y - . Jﬁ
;iﬂ‘:}r f;"‘ . - \4- -
. * . ﬂ o
'R J‘f i ’ e‘
i » =
" \ ~F \ POP S. %
. \ 3
AT .)
: ‘ r
. L4 = \ E &
i FIGURE 14 - £
. "
.) NET REFINEMENT ' ~ .
o “ ¢ R

A A

¥s §

45

~

‘ -) .] . \«
Structured Planning and Debugging . . 40 " Goidstein & Miller
. ‘ v : : ' i

-

-

\ procedure, NET would organize the subgoals into a bmduﬁl~m This leads to a generalization
< of Sacerdoti’s approach. We would represent in' the net, not only the main subgoals as alternative

branches unless ordering is required, but abso t

R .
tions between these goals. Figure 15 shows

N PATNM would solve for each subgoal, fo _:lng the procedural net technique of node
expansion. But eventually the planner would ako solve for the refations. When all subgoals, both

to construct individual ob jects, and to satisfy their rélations, were satisfied, the resuk would be an

‘executable net. Any remaining b;anchlng could be executed lln arbitrary order. Figyre I4

Illus:rate's this process. The operator NLT on a(g‘ b sets the solution variable S, not to a

'_wperprocedure. ;:ut to a net of th given in figure 15. GOALS is the set of subgoals,
ordered for planning attention In the same fashion as for séquential refinement.

Art ¢ recuruveli calls the phl‘er to solve for a subgoal. If the ;ubgoal is a n;alnuep. itis

- spliced In;o the net as a refinement. But if the‘su.bgoalh 2 set of relations, then its solution may

involve establishing a specif tc interface. If 30, a sequence is enforceg on the mainsteps ad jacent to

this lnterf’ace. The effect would be that, in figure 16, A is transformed to figure B. If there are no

' relations between two mainsteps that require interfacing, then no additional ordering will be

imposed and the net wilt preserve its branching. The fesult would be éxecutable under the

.

lmzr;‘)reuuon that paraflel branches may be executed in any order. ‘lf there are a great many
refations, then the net will uﬁicﬁatety reach its most constrained form - a sequence.
Following Sacerdoti, Arc d would crificize the procedurai net, checking for imm‘c’uo.m that
. betgme apparent only after expansion. A typldl example Is noticing that the prerequisites of gne
| bgoal-are “clobbering” a brother subgoal. For the blocks world, this inv;hles observing, by
means of a table of multiple effects (Sacerdoti 1975, p. 09), that the prerequisites of one goal are
r - ‘

tlearing a block that was placed by another goal. We shall not go into detail regarding these

éritics. The interested reader should consuk [Sacerdoti 19751 However, it is worth noting that if

S
~

' A . 46 . —

4

Structured Planning and Debugging &2 Goldstein & Miller’
’ v
r = _— - — —
¢ d’ :
i

A N * B
s N ‘ | :
‘ FIGURE 16
) ’ SOLVING FOR RELATIONS
KN — : . ;-_ -) -
—
, R
.]

—

4

Structured Planning and Debugging &2 Goldstein & Miller’
’ v
r = _— - — —
¢ d’ :
i

A N * B
s N ‘ | :
‘ FIGURE 16
) ’ SOLVING FOR RELATIONS
KN — : . ;-_ -) -
—
, R
.]

—

—

Sm;ctﬁ/red Planning and Debugging
N\ S

_refation such as R(X1,X$) might have to be replaced by an equlvatem d

~ ob jects accoumhed by ad

_discuss this further here. Our purpose here is only to indicate the dir

~
. other planning strategies, inciuding repetition and the major category of reformulation. NOAH

" ' Goldstein & Miller

d -

the original linearization was completely successful, criticsm should find no hidden Interactions.

But it'Ts probably a useful heurlstic check on the linearization cycle to include this criticism process.

»-
There ar€sybtieties in handling reiations between non-ad jacent mainsteps. For su

escription in terms of

jacent mainsteps, say (AND R (X1, X2) RAX2, X3)). We shall not

ection our research wou\d

4 - %—
take in linking the ATN representation for planning concepts to Sacerdott's prqcedural net

. T
representation for programs.

PATN's design represents an extension of NOAH, Sacerdoti's program for refining

procedural nets, in that NOAH's primary planning technique ls successive goal expansion. This

corresponds to“PATN's demmposm-by-conpnctlm But PATN also represents a variety of

lmproves the representation of the proced\sra produced (byi using nets), but does not emphum

PATN's central concern
for the fashion in which it captures the principle of lem clnmnmeﬁl'; bt

hew this goal structure is arrived at. Hence NOAH makes an

important contribution,

-

it lsnontoul theoryofprognmcompowbon ‘ (Ve

3.3. Differential Di!m_o_dz

Differential diagnosts refers to 2 conectm of stratdgies which gather speciatited selection
analyze the problem

knowledge at cruchal chotce points, Critics belong In this category. Critics

description, and ad,vhe PATN as to which transitions are permlulble and which are prohibited. A

Block's World example is ' HACKER's critic (which_could be attached to PATN's

CONJUNCTION node), that diagnoses (MO (N X ¥) (O ¥ 2)) problems as involving non-

linear relations between the subgoals.

Structured Planning and Debugging “ Goldsiein & Miller
i . ' / i
2.4 Lommg Libreries . <

\‘V’hamer a sub-problem Is successfully solved, k can be added to the answer library, even if
the overall approach fflh." This allows the soiver to avoid, repeated attempts to solve
u: fame subgoals. Strips (Fikes et-al 1972) w: and triengle tebles to achieve similar
economies. This planning technique I8 analogous to the use of n;!-formed subs;;ln; tables

[K’uno 1967 Woods et al. 1972] in applying ATN's to natural h‘ngua;e parsing, inciuding their

.mlimm'w chsrts, as utilized by Kay (1973] and Kaplan nm;

‘

-

. . |
In the remainder of the paper, we consider the rational bugs that can arise in PATN's

planning and how they can be diagnased and repaired. ' '

a

‘. , "~

~
AN

Structured ?hnnin(and Debugging 4 Goldstein & Miller

</

. §. Structured Debugging

Ast us focus on one particular component of [general heuristic knowledge]): the
art and techniques of .. debugging. The school experience is dominated by the
normative attitude implied by "right answer vs. wrong answer”. The
mathematician's experience of mathematics is dominated by the purposeful-~
constructive attitude implied by the struggle to "make it work™. He abandons an

. idea not because it happened to go wrong, but because he has understood that it
1 unfixable. Dwelling on whal went wrong becomes a source of power rather
than a piece of masochism (ss it would appear to most fifth graders in traditional
math classes).

Papert, The Uses of Tuhndggz to Enhance Educahon p. 10

4

P ‘We agree with Papert in his assessment that debugging Is 3n essential part of proPlem

uﬁving. A powerful debuggmg system frees the planner from “:f necessity of always producing
entirely correct plans. Bugs arise from heuristic choices made in constructing the plan. From the
Structured Planning and Debugging standpoint, such-heuristics are embedde& in the default
ordering of transition arcs In the absenc; of specific arc constraints, PATN would prefer Iln‘ear to
non-linear plans, round repetitions to recursion. Such .heurlma can lead to bugs. B}it we abo

expect these heuristics to ptovide several significant advantages tt&e planner, such as: -

'

(a) ;lldwing the planner to attempt new problem types with which it has had no
experience;

+ (b) often being successful (because the defauk choice happens to be correct);

(c) in those cases where an error arises, regarding th€ nature of the difficulty as a
specific dlagnostic as to the locus of the incorrect decision and the akernative
choice required;

(d) hould subsequen 1/1 -experience Iead to bugs, abunctlng the problem ducrlptton.
embeddi critic at ‘the point in the plaaning ATN where the incorrect
choice was made, and thereby preventing future occurrences of the same error.

_ip—-

~

M

We call the class of mistakes that arise from reasonable heuristic judgments made in planning
,rational bugs. In this section, we show how this class of difficulties can be explained with

reference to the planning theory. We introduce strategies for Strucmrcd chuggtn‘, i.e., techniques

' . h K

e
7 |

-

Structured Planning and Debugging © 46 ' Goldstein & Miller

[4

for diagnosis and. r‘epalr of rational bugs, based on identifying lnm:re;t or Ir;compleie plans. We
organize these strategies as aLdeslgn for a chuégrr for Annotated P Rograms (DAPR)®
w. For DAPR, debugging consists of diagnosis and repair. If we envision repair knowledge
’bemg associated wlth various classes of error, then once the underlying Cause is identified,
correcting the progfam is stralghtrorvnrd Hence, the crltlcal problem 'is diagnoslng the
underlylng cause of the bug from its wtface manifestation. We def ine a bug as being manifest if
the program produoed by a phn fails to satisfy the problem specification or model The model
consists of a Boolean comblnatlon of predicates over a Wunmlsf fed p’/ edicates are
termed violations (following Gokdstein (1974]). This definition subsurhes the special case in which a
program falls to run to c?tnpl;tim due to an unsatisfied prerequisite of a primitive mtlon. since
operators have Pre and Post modela - -
‘In terms of the ATN phnmng theory, the underlying cause of a bug Is either an Incomplete
plan, ini which a step is missing (eg., the sequential refinement loop has failed to identify a
subgoal), or an inappropriate plan, in which an incorrect arc transition has been made. Undeﬂ;ing
___ ®causes can also be categorized as syntactic, semantic, or pragmatic, according to whether the
. malfunctioning planning knowledge lies in the topology of the ATN, the semantic arc constraints,
or the pragmatic selection criteria (eg., critics), respectively. (Fof-additional deéalls on this aspect of
the bug taxonomy, the reader Is referred to [Miller & Goldstein 1976c], in which these distinctions
are made ylth r{spect to a context free grammar mirroring the topology of the ATN) DAPR’s
goal in diagnosis is to identify where in the planr'{lng process an incomplete or incorrect choice was
made'® : <) |
DAPR ts aeslgned to employ three dlagnostic techniques: model, process, and plan diagnbsis.
Process d!agnasls Is th'e traditional kind ‘of program analysis in which the programmer examines
« the s;ate of the process at the ‘point where the error is noticed. Model diagnosis gc;es beyond
traditional programming environments and .draws upon the formal specifications defining the
- . ’ :

Q - 1/2

ENC v . o

Structured Planning and Debugging ‘ 47 : Goldstein & Miller
. , . - . g

purpose of the program. Hence, it is a natural extension of work on verification. Plan diagnosis

is new. It is made possible by a derivation tree being assoclated with the program, whl:h represents

the planning decisions made in creating the code. A diagnostic technique we shall not discuss that '

Is useful in analyzing human code, but not especially appropriate for progiams written by PATN,

is code diagnosis. Thls amounts to having a list of rational form ;uerla, an;i examining the code

to'find if any are-violated [Gokistein 974, pp. 137-1381 . As currently designed, PATN's set of

planning techniqlies would not lead to this kind of mistake.

4.1. Model Diagnosis -

-

]

] .
Model diagnosis is the basic diagnostic technique, in that it involves the determination of
3

whether the program has succeeded or failed in accompllshlng its intended model. In logistic
terms it amounts to a vtrlficatlon in whlch the model predicates are applied to the structures —
pictures or block arrangements — produced by the program.,’ L

The particular set of mo:iel prediates which are yiolated provides strong evidence regarding

whether the underlylng cause is an .incomplete plan: this is determlned by checkin

e

f any code

was generated whose purpose is to accomplish those predicates or their prerequisites. If the plan is

incomplete, then repair can be accomplished by invoking the planner $6-supply the code. .

For efample, suppose that after solvin shingwell problem,” PATN is asked N

generate code for a scene consisting of two wishingwells, as shown In figure 17. This scene might

s »

be specified by the following model:

MODEL WM-SCENE e
1 PARTS W1 W21 : - - .
2 WISHINGUELL W1, W2 o

3 RIGHT-OF W2 W1 -

4 PARTLY-BELOW W2 W1 .
END

.
3

Both wishingwells would be accomplished by identification, that is, by calls to the existing

subprocedure. PATN would initially generate a plan for thnlsﬂprt;blem corresponding to the

, 9.3

. ‘ oo

Structured Planning and Debugging - 48 Goldstein & Miller s . s
' \
)
i e’
FIGURE 17 - DEBUGGING A WISHINGWELL SCENE USING MODEL DIAGNOSIS ~
-v L e e
.]
Intended Picture . Actual Picture .
///\\\ . " WwW2 starts Bere . .
LY [4 . -]

Manifest v;plations - - -
WW2 does not satisfy the wishingwell model, because the

bottom side of the/roof is not horizontal. -
. . « - Vi
Cause of the Bug:)
The plan is incomplgte. There is a Missing Prerequisite
faor this runtime environment. Wishingwell incorrectly
assumes that turtle starts out facing north.
Repalr Tg;hnlque. E : : .
- Use 1mperat1ve knowledge of v1olated predlcate (hor»zontal)
to’ dompute missing. 1n1t1a1 rotation. , *
. 4
! : -
\ J - / \
- 59 .
¢ ’ - -~

RN . ‘:e ~, A o) RN) - ¥
” = .,) - ce . v - ' » A .
% ’ F) R N ¢ R ° - A * ’
Structured Planning.and Pebugg}ng 19 Goldstein & Miff® , -
.- S S .Y) B
.. following code'q oL
Lt TOMSEN - Lot
. LY L . . o, s L TN
, . z-g E” X « 4 . . ,)) \ -
‘ %30 FORMARD 160 7 e .o
. ABPE S
fse - . - ,
ENOD | T o - .

k4 v .

' Llnerﬂﬁo and‘kconsmute an In@face 10 accomplish model assertions ﬁ and 4. This code hai

bug: the second. hlngwell does not correspond to the wlshlngwell model, because the RO
" not HORIZON Model dlagnosls determlnes that, In fact, code exists in WW to accompllsh : E
© ., 7])
.thg‘ propqty é’!;lowevet. 'the plan for this code Impllcltly assurhes that the turtle starts out facing

' NORTH No' oode was generatéd to accompush thls pferequmte Jelnce in prevlous uses: of the

. . . . Y \ - (‘,\
'Y procedure It happened to 3Iway; be sptlmed in the Inmal envlronment Hence the unm
- cayse of the bug is éncomplete planntng arlslng from an unexpected rpntlme enylronment The -
rep:ir téchnic]ue is to use' irnpemlve knowledge assoclated wlth the vlolated predlcate to compute
the mu;gpg ‘éode: an u\terface rotation step. .) L oy
° . - L . o . . .
‘ EDIT WJ-SCENE - . _ e Lo 13 \ ’
45 LEFT 98 ' ‘ | : -
Ew F) A' ’ & ‘- .r . . . O . ! . N ‘
T o - : |

L 4

Model diagnosis can succeed in cases such as this, where some predkat‘e*cgn be found for
- \ - i
which no code exists to fccompllsh it. ARernatively, if the plan indicates that code was created to

: ¥

' accompllsh every appuable predlcate. then further dlagnosls is necessary/ Perhaps there are

Y

unexpecgd Interactions. Pm:‘ dlaggom 13 the next stage

’ & L4 " /
-] v
) - Vi ~ 7’ ~
- '.)
* & - 4 . ..¥
.) . é - ; {
. —
. ,) ® ‘
Teme :
[§
.' t-w -
, : . o5 . - .
. —~ -

- ' .

.. P L . ¢ ’
~ jsmured Planning and Debugging ' -\50 o Geldstein & Miller
- . \ \\ “ . ,) ‘ . .
_L Process Disgnosis : o - ‘ x

13
o

Exammlng the state of the execution process. at the point where the bug\beame mnlfest. is
often helpfu| in dhgnoslng unexpected interactions. This is the diagnostic technlque used by
HACK ER Conflicts between goals are dhgnosed\s non- Iinurmes and reflect the underlying bug
of haytng applied an inapproprlate (e, pragmatically incorrect) plan. The essence is observlng .

¢ that one goal ha's vtoht a model predicate deicrlbing the Intendeq eﬂ‘ects of a prior step. The

HACKER éug's of Pferequisite Clobbers Brother Gosl. Strategy Clobbers Brother, and -

Pmequssue Conflicts with Brother are all of 'thls type.

. Sussmn (1973} develops elaborate process state patterns for olasslf}ing klnds of interactions

/w,m:h we shall not repeat here. The essessce is observing that a model predlcate is being undone

\ within a during whlch it is expectea to be true. For exlmﬁle c?nslder the blocks world
_ problem of building a tower ‘of three blocks: (AN (ON A B) (ON B C)) Part a of ﬂgure 18 -

(f rom [Sussman 19‘71]. pp- 10-11) dlagrams HACKE s process state &a buggy first attempt on this

problemy: Each box represents a stack frame; the horizontal axls represents time; the venlcgl ax‘ls.

rep gms depth of procedure calls. This dlagram m:tche; the pattern (part b of the fl‘gué) f:r) -
. the b'ug type. Prerequisite Claibm Brotlm Goal Once the difficulty is thus chsslf Ied repalr
lmow!edge assocm:d with that type of bug may be applled)

' A predecessor of thls dlagnosis technlque an be found in the PLANtX capablllty of

. the STRIPS problem S(VQI’ (Fikes 19721 ln executing a plan, PLANEX cheEked for model

pred:cates being aa:identally undone. HACKER generalized this by cbecklng for situations in

which previously satisfied preo.t;:ates:: intentionally” undoq:l,e,. where the plan itselM™s f |awed.
Process oiagnosls can fail viheo the subgoal interaction is too complex for the de!;ugger to.

recognlze DAPR would next resort to plan dlagnosls a new debuggmg’mique not prevlously _

formallzed to sld in lsolating the culpable design decision. - '
4 ik ‘

At
(o)
)

, . A
. . . -
e -~
] , , .
- . .
’

Struptured Planning \end Debugging 51 ° Goldstein & Miller ‘
, o FIGURE 18 ,
- Débugging (AND (ON A B) (ON B C)) Using Process Diagnosis
, ,) s . A ‘
i) ‘ ' N
£ L | |
‘ 9 /. N ’ |
- /[- >
; ’ * / el
‘) P
- ! A~] 3 .
~ r
I ’ 4 " s ,
. N . _9 ~ |
/\ “ ~ .
)] \ - }
. v . - .)
= rl 7 ‘ -
' ! —>
/. —
: 8
R
- "~ ‘
. i - e t
¢ a. Schematic Diagram of HACKER's Buggy Process ‘
\ & - 1
’ -
- B
Step i 2 y Stepl
) a L
. — - .- L
b. The General Pattern.for PCBG Bugs)
o :
’) Y
.) : . : '[from-éuSSman {Q74, pp. 9-10]

Structured Planping and Debugging. .- 2 “ Goidstein & Miller

} . N

. .
~ \/

" Plan dhgnom is based on the fact that the planner has avalhble knowledge of various

3. Plen Dis s

heuristic deduom lt has madhkh may prove unmowsful Associated wlth each node of the
®
derivation tree for a PATN plan would‘be a specification of the values for a set of semantic

-

variables. The values of these semantic variables correspond to “snapshots”™ of the contents of the

: a4 .
.. ATN’s registers at the time that the node was generated. The CAVEATS variable Is the

npomory for advlce regardlng heuristic planning choices, for use b phn dhgnom
Were PATN to decompose a model linearly, for lnstance without apy actual proof that no
v

ltmractiom existed, that fact would be recorded in the CAVEATS variable associated wlth the
P

appropriate node of the deﬂvatton tree. Of ooune. such a stmpll(icatlon may turn out to have

been lncorrect muder R spedﬂc e.\ample the task-of drawing a face on the ba;ls of the

- e >~

following model. ~ / -

¥

N A FACE consists of two EVEs, a NOSE, a MOUTH, and @ HEAD. (T he two
eyes are called LEFT.EVE and RIGHT.EYE.) The HEAD and EYEs t be
CIRCLEs. The NOSE must be an equilateral TRIANGLE. The MOU t

- bea LINE. The EVES, NOSE, and MOUTH must be instde the HEAD. The
‘ EYEs are to be ubove the NOSE. The MOUTH should be below the NOSE.

MODEL FACE
1 PARTS LEFT.EYE RIGHT. EYE NOSE MOUTH HEAD
2 CIRCLE (HEAD LEFT.EVE RIGHT.EYE) L
3 EQUITRI NOSE
4 LINE.MOUTH
5 INSIDE (LEFT.EYE RIGHT.EYE NOSE OOTH) ‘I-EAD
6 ABOVE. (LEFT.EVE RIGHT.EYE) NOSE -
A ;Ngaw MOUTH NOSE ' .

ln the ibse)t;ce of sp;clféc critics (le before PAT‘ﬁ had learned of the peculi;rities of INSIDE)
~ PATN would design the eyes and the head indepmd;ntly But if the head and eyes are all_circles
of the same defayk sjze, then satisfying the rehtlon that the eyes should, be inslde the head will be -
' tmposslble A linear plan that ®ives for the main steps inﬂependw of the relauom leads to a

. w' "

Structured Planning and Debugging ' 5 Goldstein & Miller

~ DAPR would |¢;cailze this difficulty using plan diagn'osis. The key step is noticing the
existence of a caveat, stating that the linear tru;men:; the subgoals forg_EYES and HEAD was
justified only on heuristic grounds. In the absence of other guidané:e;‘Ithlg signals a potential bug.
A closer investigation of the semamlé of INSIDE would indicate a non-linearity with respect to
the size property, which would then be recognized a)s‘the soutceé of the problem failure to observe
a relevant pmgmauc' arc constra.lm on exit from the CONJUNCT!JC-)N node ‘(due to prior
ignorance of ‘that constraint).
PATN need not continue.to make such mistakes in the future. f’uture‘performance could be
improved by associating a critic with the con junction plan node of the ATN. Thus, in subsequent
problems, if ;wo parts were descrll;ed by the INSIDE relation, non:linear planning would be

chosen immediately. In particular, the model would be modified to impose size properties on the

parts so tha, in terms of the revised problem description, linear decomposition would then be

14

possible.

Caveats for use in plan dlagm’:sis would also be generated wt;en heurtstics are employed
during problem reformulation. The planner might construct what it.believes to be.an equivalent
problem statement, but not in fact rigorously prove the equlvalency For example, two problem

descnptlons might be equivalent only over a subset or the posslble inputs, but the planner might

a ‘postpone determination of whether “inputs outside of that range are ever posslble or allowable

Such an heutistic approach though frequently successful can cause trouble. Hence. this too is

recorded ln the plan derlvauon and potentlally noﬂced~during debugglng by plan dla‘gnosis ln
the cade of allegedly equivalent reformulauon the, CAVEATS varlable associated with the
equivalent-reformualdtion node of that derivation tree would confa'ln the w;rnlng that the.
reformulation ¢ upon heuristic assumptlon! which were not rlgorousiy demonstrateci.

When such warnings are noticed during bug localization, DAPR's action would be to call

wpon more thorough analytic technlques ~ such as fermal demonstration of equivalency -- to see If

-

59

}

Structured Planning and I':)ebugg'lng N 54 ‘ Goldstein & Miller

-

the heuristic assumption involved was in fact incorrect, thereby leading to an Inapprb;)mte plan.

Some critics could involve such costly p-rqcésslng of the problem spetification that, even though

alrexxdy learned from prior entoumers, they mlght not be applied durlng lnlﬁal planning. If plan -

diagnosis points to a poulble error, thue critics could subsequently be lmoked

44 Repsir , L “

RQAPR’s overail hpalr stfategy fot, buggy PATN plans, once the culpable decision has been

loullzed i3 to undo the faulty choice and resume planning from that point. Selection of an
_akernative arc transition would be f_a_ndliuted b! proce::!ur‘aluknw!edggeusoghteq :l;h:
2. the viokated fodel predicats; g
- b. the bog type;)
¢. the plantype; “

d. code caveats such # rational form criteria. J

s

Some of Mis knowledge Is domain specific (primr!lyvinovledge of repair techniques for mode

predicates: Goldstein (1974] charactérized knowledge of this kind for the Logo world.) The -

remaining knowledge is of the sort suggested in thq"dncufslom of the respective bug and plan

types. For example, one repair strategy for a faukty equivalence reformul;tion which falled' to take

into account the full’ range of inputs, is to design 3 conditional plan which sepantes the

ewlvalence-premvlng and non-equlvalence—premying inputs, and then to wpply a’ separate

' solution for the non-equlvalent case as well.

/

4 . . A
Stmctured Planning and Debugging 55) Goldstein & Miller -
45 Uimitetions of the ATN Theory of Buge .

Theg are, of course, other kinds of bugs that arise in human programming that do not fall
qnder‘ the heading of rational plar‘ning errors. These range from execution errors to the

construction of irrational plans. Execution bugs consist of those errors due to mistypings,

misspellings, incorrect programming language syntax, noise on the computer line, and other such

failures to successfully execute a statement of code. They are often dlagnosed by the conventional .

computing environnients, simply as a result of the code being unrecognizable. Repair is

accomplished by correcting lhe s‘lde effects, if any, of the erroneous command, and then re-

executing an edited vetsion of the line The phn is not af Sected ~

- -

Irrational-plans can be preci»sely defined with’ respect to PATN They GOfrespond to making
tnnmiom that are not allowed in the planning network or failing to make’ transitions that are
rj\)red An example would Ge pursuing & repetmon plan and famng to handle the terminal
cases. PATN, as a theory of rational planning, does not explain these kinds of ;rrors and we shall
not disduss tl:nem f urth'er, here. (However, some potennal' im—pllcauons of this distinction for
structured programming are touched upon in the concluding section.)

Ano(her source of dissatisfaction with prognms (w'h\ch we mention for completen;u but ,dﬁ
not pursue) amcs from efficiency constdemtons The ng ATN is not a compiler and does
not attempt to optimize the prognms whu:h are produced. As outlined l:ré DAPR would be
restricted to ‘:recdng programs that fail-to achieve their specifications. Programs that are far
from optimal, but are nevertheless successful in terms of their models, are ::orrect with respect to
rational bugs. Howeveg an interesting question for fﬁture research is to explore the extent to
which PATN-like hierarchical annotation could provide guidance to an optimizing compiler.

In the next section, we elaborate the Structured Debugging appr;nch to categorizing,

diagnosing, and repalring rational errors, by analyzing the debugging behavior of HACKER,

Sussman's (1973 blocks world problem solver.. ,

N

1
Y

Struétured Planning and Debugging . % Goldstein & Miller

5. Reconceptualizing BACKER

.. the current bug classifier in HACKER is an ad Aoc program snd thus, the body
of knowledge (called Types of Bugs in the overview flowchart) on which it
operetes is difficuit 1o separate out and display. This, of course, makes Types of
Bugs #iso very difficult to extend. The hope is, however, tha Types of Bugs is
essentially independent of the problem domain and need only be expanded when
new problem solving methods (the Programming Techniques Library) are.
" introduced. An important srea for development ‘of HACKER-like problem solving
methods would be the systematization of the knowledge in Types of Bugs in a4
more modular way.
Sussman, A Computationsl Mode! of Skill Acguisition, pp. 103- 104

Sussman’s HACKER progr.am represents a landmark in Al theory for its emphasts on
d:bugging as an important constituent of ’earnlng HBWever. HACKER is theoreucally
tnctmplete. in that i fans to Integrate debugging expertlse with a theory of plans. The underlying
bug types in HACKER appear as a miscellany of debugging knowledge with no underlying
regularity. The classification algorithm that maps manjfestations to causes is ad Aoc.

- We shall extenc.lAthe ,‘HACEK ER paradigm by developing debqulng knw\edgé in the context
of a coherent theory of planning 'Frouf this vantage point, the underlying causes of bugs are seen
as specific errors in plan synthesis. The types of causes follow unlghtfmwa;dly from the possible
failings in tnv;rslng an ATN: falling ;o make an arc transition (incomplete plans), or making an
incorrect arc transition (inappropriate plans). For example, failure to generate code to achieve the
" prerequisite conditions for a primitive constitutes a semantically incomplete plan.

In this section, we analyze HACKER from the.P;\TN standpolr;t. .The purpose is to
demonstme how PATN provides: '

a~

(1) greater theoretical cldrity, by means of a unified planning and debugglng
theory:

(2) greater depth and breadth, by means of natusal extensions to HACK ER's set of
« bug types and debuggiT techniques

There are oﬁq bug types in HACKER: Prerequisite Missing, Prerequisite Clobbers Brother

nfo
- <

.

] .

" 'immu'red Plan.ing and Debugging . 57 ' ‘r Goldstein & Miller

Gont, Prerequisite Conflicts®With Brother, and Strategy Cpobb‘ers Broth{r./ We analyze. each in

. . -
turn.

5.1. Bugs ArmL\Lfrom Incomplete Plam

The HACKER bug type, 'Prerequlsue Missing.” Is a special case of incomiplete planning.
This bug'commorl\‘l’y arises in situations wherel‘n the accomplishment of a model predicate depends
chitically. on the partlcular environment in which the procedare is executed. Some?mes failure to
generate code to satisfy a prerequisite (because it will happen to be true aiready in the expected
initial environment) will be recognized as such during planning, and recorded as a aveat. The
issue of dependency on the inmal state was discussed in (Goldstein |971 pp 85-88] in which
ASSUMPT!ON commentary was used to record known dependencies between the program and its
initial environment. For the blocks world, Sacerdoti [19’75] used what he termed phantom nodes to
represent goals which happen to be true in the initial state, but which would otherwise need to be
accomplished. ’ | . . |

\'\A rational planner may not realize (or be prepared to take the extenslve time necessary to
N deduce) all potential lnteractlons bemeen the model and every possible (or mtended) initial
environment. For example, a plan may be used because the Post Model in the answer anry

4

matches the problem‘slatemem; but the phnner may not prove that all the staigments in the Pre ~
Model must be true for all run-time environments. Hence. the plan might not be complete with
. mped o a new enq"onmem In this situation, debugglng consists of modifying or extending the
plan to satisfy the set of newly viohted predicates.
Durlng careful evaluarwn 19 missing prerequisites are manifested by pnmmves generating
-complaints. In the blqcks wor id, for example, the robot will complain if asked to move a block to a .
posluon that_some other ob ject already occupies, or to grasp & bio.io%e top i3 cluuered

‘Analogous complaints are genemed by Logo turtle primitives. Logo will complaln if the turtle s
) ' , —_

-4

»

Structured Planning and Debugging 58 . . Goldstein & Miller

[4
L 4

asked to move of f the screen or if a turtle commahd is executed prior te the display being created

-

by a surt-duphy function.

A unified approach is possible, which subsumes both the comphlms generated by pﬂmmvu

arid the broader class of model violtions (referring to a program’s failure to accomplish its goals). °

This synthesis is obtained by the use of Pre Models. If a Pre Model is associated with each
primitive, then unsatisfied prerequisites simply become model violations. For example, as
explained “in section two, the Pre Model for the HACKER operator Mowe black X omto block ¥

would contain the assertions:

(CLEARTOP X) ' iX must have a cleartop to be picked up.
{ON X OLD-POSITION) tX must be at some known old position.
(SPACE-FOR X ¥) :Tha top of Y must have room for X. :
/] ¢ .
{ The inclusion of unsatisfied prerequisite manifestations in the class of model violations, and
the classification of prerequisite missing bugs as semantically incomplete plans allows a unified
treatment of diagnostic and repair techniques. Each model predicate, whether part of a primitive

opentors Pre model or a problems model, has procedural knowledge associated with it that aids In

isofating the bug locus, propostng repairs, and thereby completlng the plan.

5.2. Bugs Arising from Incorrect Conjunctive Plans

Prerequisite Clobbers Brother: Goal and Nonlinear Compaosition

Prerequisite Clobbers Brother Goal (PCBG) and Prereguisite C(mﬂtm with Brother (PCB) bugs
both arise from a linear phu being appHed to a non- l!near problem PCBG is the underlying
cause when attempting to build towers incorrectly from the top down. In HACKER terms, the goal

Is (RAKE -(AND *(ON XY} (ON Y 2))). HACKER's defauk solution is to achjeve the con juncts in

4

" the order in whlch they appear. That s, this bug arises in situations in whlcﬁ the planning system

\
lgnores the possibility that one con pnct may haw to be accomplished prior to the other. From the

, PATN sundﬁolm. this bug s, cauud by the planner following the (pragmat.lally mapproprmc)

l‘
’1

¢

~
R . N » : . :
- Structured Planning and Debugging 55 . Goldstein & Miller -

g

linear arc from the conjunction node. PATN's defauk, as explainex; previously, is to choose a
lirvear plan except w.hen non-llnea’r composition or decomposition critics detect an interaction.

In these terms, it is clear how debugging is to be accomplished. DAPR w'ould ;e-appTy EAT
to the problem with the advice that a linear plan is prohibi;ed. Tr;ls knowledge is represented as
an NLC ‘predicate on the'arc from the CONJUNCTION node to the NONLINEAR
COMPOSITION node 20 (See figure 7.) The predicate checks for_patterns of the form,
(AND (ON X Y) (ON Y 2)),in th; problem ‘model. lf\th‘ey occur, planning control is transferred
to the NONLINEAR COMPOSITION node, with composition guidance b’eir;g appended to the -
ADVICE reﬁiste;'. This advice, comged by the NLC predicate, directs the order of re-
'oompaiubn ‘when planning eventually reached the. Sequential Refinement loop. (See the overall °
'AfN flowchart of f l‘gure 2). For the'tow;r_ex'ample, the effect of the advice is to ensure that the
plan for achleving (ON X Y) is executed after the plan for (ON Y 2).

QSussman ana'lyfed these bug detection patterns, but had no-coherent place for ;he;n in_an

ovérall theory. From the standpoint of an ATN planner, they represent constraints on arc

transitions, and their effects are to set registers to guide subsequent planning. :

.
.
=
. -~
’ 3

- Prerei;;uisite Clobbers Brother and Nonlinear Déecomposition

PCB arises in the following problem: HACKER is asked to find space for both blocks A and
B on base block C, ie. to accomplish figure 19 In attempting this problem linearly, HACKER
first places.A on the center of C (ﬂgure 19¢), with no consideration of the brother goal of placing

B on C. When the time comes to place B on C, there is insufficient room and block A must be

B

pus'hed Teft (figﬁre'IQd‘). This results in ; Double Move (rational form) maqifestatlon.

' HACKER's debugging strat:gy is to construct a plan that simultaneously takes account of both
prerequisites. (PLACE-FOR A C) and (PLACE-FOR B C)

~ The PATN-DAPR approa;:h is to have the debugging episode produce a non-linear

& {
. . - H
. f 4

- 65

Structured Planning and Debugging 60 Goldstein & Miller

.

> - ’
7 ey o -

GOAL: (AND ON A C) .(ON B C))

#

-

. b A N B . d | i

“

- ' . ’ . .
.) . b
Initial State Goal- State

c

i
4

A puton C A moved left to make room
for B. Double move of A.

.o : FIGURE 19 o)
*PREREQUISITE CONFLICTS WITH BROTHER :

— i LI —_—-

v

|

-

Structured Planning and Debugging 8l L Goldstein & M mr

decomposition critic that trigge;'s on mhltlple SPACE-FOR predicates: jéPACE-FOR X Z),
Y Z). After triggering, t‘h‘e crlt‘lc's actidp is to append to the p‘l:oblem description
r., M, locatl;:n predicates for X and Y with re?;;cct to Z. Clven',zxpllcn locations, a linear
decomposition can take place.

' PATN does not go beyond HA‘CKER In harndnng this &If ficuty. The only claim here is that
thé-ATN representation helps in understaﬁd-lng tI'1e issues involved: The planner;s classification of
eon junctive non-linearities into non-linearities in ‘the decompositlon for’ in the compesition (eg.,
their order) makef both PCBG and PCB understandable -- a‘nd’ even to be expected - given a

» -

‘default preference for linear plans. : Ny

5.3. Bugs Arising from Incorrect Disjunctive Plans

/ The bug Strategy Clobbers Brother (SCB) arises when two different strategies are attempting to

accomplish the same goal, but con‘ct wltt_: each other. The particular blocks world example
discussed in HAGKER involves the findspace strategy “remove block from surface” confllcung
with its brother strategy co:npact by pushing to the left” (flgufe 20). Removal ‘can undo a prior
compacting. HACKER notices the'confllct and debugs by imposing an ordering on these
strategies. Removal ought to be accompllshegl. bc:-fore compacting.)
SCB can be understood in PATN terms as arlsmg from an incorrect transition at the node
for disjunction plans. -The disjunction is in the set of alter::ti strategi% for accomplishing the '
| 'FINDSPACE goal." Although dlsjuncuon plans were not covered in section two, extending the
basic PATN design to handle this additional logical operand is not dif ficult. Figure 21 Illuuram a

planning taxonomy for the decomposition of disjunctions.

y The first major decisiun involves resolving whether the disjuncts are exclusive or additive.

Exclusive disjunction refers to a set of options in which only one can be chosen. Exclusive

> disjuncts cannot “partially” suctecd. Crossing the Atlantic by steamer or plane are mutually’

.
. . . . ~~

Structured Planning and Debugging) 62 ‘ Goldstein & Miller
GOAL: (AND (ON C A) (ON D A)) N
i Y] B C ') B|C N ’
¢ o \ 'I - ! ' , . .
D ¢ 'A‘ ‘ comgact:> e A -

! | Compacting: Blocks pushed tojleftmost position
o}

.
-,

E [y .
. t . - .

~
w
0
2
0

S D A —xemove -, D A o

22 " .

~ ‘ ~
.

r ‘
’ . ", L) T . !
’ * * |B| C . x - ©
.) D A ‘.: ' —
i + ' -) \l
. compact o % -
r . ' i
®C ’ Y . lc
! l remove * - ' gt
; D ! A —_—= D A 3
1 | i - -
; |
Top of A is compact : Conflict: Top of A no
San longer compact
[
£ . :
Compacting then removing leads to conflict. The removing strategy
has undone the compacting.™) .
>
) »

FIGURE 20. .
STRATEGY CLOBBERS BROTHER - -

-

' s
, -/

'y . 14 - \ &
e : . ——
- -, - - .
. » "
’ N .

Goldstein & Mille_r‘

; - - - - .- - - - ee— ———— st ————

C : "7 |é= linearg
PR n - . .] ' .

. | . .1-- EXCLUSIVE - . - .
:] T ' i ~N ’ .

1

w1 . -] {-- non-linsar . : .
. "oy - - 3 . Lo
. s . ¢ ‘ . ' - § ' 2 - i
- ‘ -~ DECOMPOSE -- OR --| o :
’ - . ' . 7 ' ‘ T ' - ' ;) - T
! . », | {-- linear o, “, .
- ' . ' i , '
- i p-- ADDITIVE) --} - .

; f . N ' ..

S | == -non-| inear

L X :Flguro 21. A Plaqnlng Ta;:ononu for Disjunctjon

i P
i .
~ . .
. { ‘o
- . ‘ 5
A =3 -_— - — N ’ *

v : - . N
\ C

.3
2
- \7 - - L3 ”»
.
- * A
" ~ >
P
— N)'
. 4 2 ~ -
- » L 3
* ‘ .
- ’ -~ .
.-
- - /.‘ 1 AY
B N . . t
. .
. . - / s
E 3
- . . ¢
. . . : - . -
. - . . A 'y 4
’ . " - . - .
» . ‘
54 AY ‘ !
: : &
o - s .
4 \
. . , . . I -
. =
. » .,
. v, - .
- S
0 ¢ L) . 1
= : ‘
b - R
. . -
R «
»] 1] A he -
“ . . ;
- . -
. - .
. -
. - *
. / ‘
. -
.
§ "\ ¢ §
. (- , «y
. .
N .
¢ - -
A * . ¢
. Ad i
’ N
L
. . ~ 4
’ - M . " . . L
L]
. , L 4
i f . . »
- M (\]
. . 63
. R s .

3

-’ g

red Planning and Debugging = 64 :

& Goldstein & Miller

. ! o h B
fusive travel strategies. One does not travel half lay by plane and then switch ‘to ship.
g »

Addltlve dis juncts can partlally succe'ed and lndeed may behave cooperatively Strategles for
f lndlng $pace are of this kind. However after deciding that the disjuncts are cooperative, the
. question of whether there are posslble interactions I still open We intend to Implement this in

35 {
PATN in a similar f ashlon to the handllng of con junction, wlt{ Ilnearlzatlon cycles '

»
L)

Relative to thls taxonomy, the underlyﬁtg cause of SCB is an lnapproprlate arc<choice, similar

”~ .
to PCBG and PCB The difference Is only that the nonllnearlty which has been lgnored is

-

{
relat.lve to alternatlve dis pncts rather than con Juncts. The planner rnay have chosen, by def ault

to treat subgoals as lndependent additive dis juncts. when ‘in fact they' are dependent: subject to a
non-linear cohstralnt on their order of application. The appropriate debugging technlques are also

similar, wlth corrective knowledge being attached to the arc transttlons out of the DISJUNCTION

¥

node of the ATN.
. ’ ?‘ ‘ ¥ l
5,4. Gonorollzing' the HACKER Raradigm .

Thls secrlon has argued that analysls ‘of the faults in plans as incomplete or mapproprlate arc

tramltlons provldes a unifying framework in whlch to understand the miscellany of HACKER

-

bug types. We conclude this aspect of the discussion by summarizing the dlrnenslons along which

i

»”.
PATN allows a broader view of program planning and debugglng than is present in HACK Ell

ok HACKER coptains an lmpllclt theory o planning, consisting of an assortment of
{

. progl'ammlng technlques A program is written through “successive macro expanston usmg these

technlqueg We think that the PATN framework surpasses}lAQKER along this. dl

brlnglng greater organlzatlon to planmng Rather than as a "bag ol‘/trlcks (Sussm;\n 1973 ‘_p ‘.

, PATN would organlze programming knoudedge as decomposttlon techniques that convert _the

standard- logical operatorrl-- AND, OR, FOR-EACH - into procedllral‘form. From thiy

standpoint, HACKER's program writing capability 4s a subgraph of the planning ATN, consls\tlng'

KN
2 -

3

a-

4 Structured Planning and Debugglng ' . 65 . Goldstein & Millet -
* . . ?' :

s
—

of the ldentlflcatlon and decomposltlon portions, but excludlng problem ref ormulatlon .

.

2 HACKER is critically'dependent on the annotations assoclated wlth the program\lt writes;

but no clear theory of annotation s present. The lnngulstlc analogy-underlying PATN leads to a
. cencept of -program annotptlonﬁs the hlerarchlcal derlvatlon tree that the ATN generates.
augmented by semantic variables associated with nodehn tlre derivation tree (which specify, s uch

P

contextual information as the problem speclﬁtatlon debugging caveats, and \re-composition

.

~

¢ advlce) The set of semantic variables avallable during debugglng is not arbltrary or ad Aoc, but

’ corresponds to snapshots of the contents of the ATN's registers during plannlng, PATN's notion

- N

of commentary follows from the structure of its grammar, and from the semantics and pragl'natlcs6
' - \ . . ., N

* of its augmented transition network. e g

3. By having a comprehensive set of planning constructs, it is possible to predict*addltlons_l

types of bugs. For example, just as the wrong choice between linear and non-linear conﬁjnctlon.

s

. 'plans leads to bugs, so too does the wrong choice betwéen any set of mutually exclusive blannlng

. F Y

> arcs eManating from a given node. Thus, a similar class of bugs can be expected to arise in

- - L3

deggling between rou'nd (simple tail recursive) and fully recursive repetltjon plans, and, indeed, In

human problem solving, th|s confusfon is often displayed Another class of bugs arlses when one

a

con junct does not completely “clobber” another, but partly interferes The potentiality for thls is
. apparent when it |s\ remembered that prglem descriptions may be more complex fogical mode"ls_'

. lhan those addressed by HACKER. An example of this lr}the blocks world is, bulld two green
\ L
toﬁers- There may be no |nterf erence between the choice of color, but there may be lnterf erence
. o -
* . in the choice of blocks, as would occur if only a llmlted number of blocks were avallable. -~

l' -

L ﬁACKER s critics can be characterized as transition constraints on ATN afcs From this
e broader viewpoint, one immediately’ notices the possibility for posmve as well as negatlve crltlgs'
9 . ‘ ¥
, which argue for or agaunst particilar plans More generally. given the situatlomor chobslng a

= N

transltion arc out of a given state in the planmng network, a crltlc is ;lmply ‘some selectlon f unctlon
N © .-

. . . . -
\ . , - , . . .
-
Q ‘ R i 4 N * ; .
D 7 . s , ’ > A
‘) ' g ..s- 1 - . N

Structured Planning and Debugging . 66

S

Goldstein & Miller

¥ c -~
5. Unsatisfied prerequisite manifestations can be considered instances of the more genéral class

of model violéttons. All that is needed is to include operator models as well as 'prob'lem models.

This is not an ‘added burden, since operator models are necessary anyway as part of the primitive

e

» 4 .
HACKER philosophy that problem solving consists of both planning and debugging. Our

Mbnry used by the identification planning txhnique

In concluding our discussion of HACKE&we must stress that we agree with the

4

ob tion is t lt HACKER treats tftese two- com lementary activities in ap lsolated fashion.
Jec P

HACKER does not pay suff iclent attention to the theory of desctiption for problems, for operators

" and for plans. We have tried to ilustrate, how dur Itngutmc theory of plannlug and debugglng

remedies this. . \ - . - : : >
. ...‘ ~ '
- e VO
3
. R -
\- > -
. []
.)
e - ‘
‘. <
J(\ -
~,))
. . a ' h)
. A
| , <
. . »
- ®
..
. 72

. ' , ~

. Structured Planning and Debugginf. 67 _ Goldstein & Miller

- -
. haad

6. Conclusions \

The proper study of those who are concerned with the artificial is the way\'in'
. B which that adaptation of means to environments is breught about -- and central
to that is the process of design ilself. The professional schoolsgwill reassume
"N’ﬁoir professional responsibilities just to the degree that they can discover a
science of design, a body of intellectually tough, analytic, partly formafizable,
partly empirical teachable docirine about the design process.
) Simon, The Sciences of the Artificial, p. 58 o

In striving to-achieve a rigorous, uniﬂed theory of planning and debugging, we have used

" cohcepts from cunpu&ml linguistics to characterize tRe prot;lem solving‘ pl:occss. Plannlng‘
concepts were repmenﬂ :uing an augm;ued transition neu:'ork resulting in a structured theory

_.of ‘planning which appears to be both péwerful and rilear. Debuggnng'w;s analyzed as the
diagnosis and repair of incorrect or lncomﬁlete plans, which inevlta?ly arise in the couru.: of

~ rational but heuristic phnning. We conclude by summarizing the Nrﬁttatiom, extensions, and

potential applications of the "-tructured Planning and Debugging theory.

’

6.1, Limitationg and Extensions of Structured Planning ,

My mind was struck by a flash of lightning in which its desire was fulfilled.
Dante, Paradiso (Canto XXXIII), in [Polya 1965, p. 54}

k ,‘0(9 course, there are.many ;spects o} human problem solviné and its Mlashes of llghtnlhgt‘h:'t

we have not touched upon What folg:u is some of the specific limitations that we perceive in the‘
theory embodied by PATN, and possible extensions to remedy them.

] In section three, _v;e dlscuugi how the genen;ion algorithm running over the ATN cw be

improved. These improvements could obtain better performapce within the boundaries implied by

the knowledge presént in the network. They do not address thofe limitations Inherepit in the
. - hd . r
: PR .
particular subset of planning knowledge pfesent, L.e, the basic taxonomy.

Beanné in mind that our problept descriptions are composed of logical operators, it is readily

N pparent that the network currently contains techniqugs for solving conjunctions and universal

o . . ” \ .
Q ' g’

ERIC SR 73 N

+

“ 4
Structured Planning and Debugging . . 68 Goldstein & Miller

-

quantifications over a finite domain (repetitions), however, the netwock does not contain strategies

il v

for han;:mng disjunctions, negations, or exitential quantificationy These clearly could be
1néorporated using the ATN formalism, but w; hav'e not addressed /the last two m this paper.
(Disjunctions were briefly discussed in section five)

Moreovef.' with technﬁues for all of the logical dperators, the planner would still remain
incomplete. Even if a problem is :!escrlbed asa cc;njunction. the _e!rnner may not find the
constructive solution necessary to accompllsh' the conjuncts. Interactions might exist that make it
impossible, or the partlcuilar technique for rescflvlng a certain lnteractlm: may be unknown.
Nevertheless, we beu‘e‘ve th;t the logistic framework for de&crlb}ng problems at least gives a super-
structure on which to build more elaborate plannl.ng techn‘lques. « T he success of this n.lper-
structure can be evaluated by the exter;. t‘o which future research 'allows the collection of
decomposition andlllnearlutlon techniques to be extended within the ATN framework.

Another PATN limitation lurks in the ad Aoc nature of its reformulation techniques.
Theotetically, a general theorem prover ould enumerate ail equivalent models. But such a, sirateg;
would be compﬂutatIOnally too costly to be useful. Instead, we enumerated a small number, of
heuristics. Future research might attempt to find a middle ground between general dedyctive

" strategies and specif lc proce_’durlal heurlstlcs.;. Such an accommodation fs suggested by‘retent work
on theorem proving (Kowalski 1973; Moore 1975]

In deslgnlng PATN. we have emphasized an hierarchical approach to plannlng Such a
philpsophy is a simplification in that it does not take account of possible heterarchy [Mlnsky
Papert 1974] By this We mean that in sore plannlng sltuat.lons a person clearly, takes advantage
of bottom up evldmce to guide an ordlnarlly top-down analysis. Information and declsiom do not
inevitably flow in'a single direction. A robot that trips over a bag of money on its way t0 rob a.

bank should not kh:k the money aside and continue with the caper. Figure 22 illustrates an

Heterarchical Ref inement loop. in which goals can be reordered after each recun!(e\solutlon fora

REORDER GOALS

S *SEQ{Mi,Mi1}

d

G + First Goals
Goals +« Rest Goals

SEQ(G) +PLAN (M- G)

—%ﬂ LINEAR |— - SEQ

a |) Goals +ORDER {Mi,Mij!}

‘b

[

X N . Goals =Nil €

’ v - N .POP S

'TIGURE .22
e HETERARCHICAL REFINEMFNT

e e -

- __) REORDER

76

13TTTW 9 UT2I8PTOD

S8uy88nqaqg pue Sujuuwyd pPaaniIdNIIg

69

[3

v
Structured Planning and Debugging . - Goldstein & Miller

mﬁgoal. Eve’nml!y this sort of complexity must be addressed. However, our re\snrch phn,li first
to construct and expertmem with a clearly top-dawn structured phnner. in order to better

understand its umlmén as wen as its virtues.

6.2 Swngry of the Structured Debugmw , k
l%gnﬁg DAPR, bugs and debugging were analyzed in the context of the Structured
Planning theory umjkr!ying PATN. Since PA'va‘resems planning knowledge using an

augmented transition network, it is pdssible to describe the underlying causes of bugs as specific

classes of erroneous arc ‘tnnsltlm decisions during phnnl?g. The general form of a bug can

« either be failure to imlude a needed consument. or incluston of an !mproprhte constituent.

These I‘aﬂu;es can be caused by. ignonnce of or fallure to obey ATN arc transitions and ‘the
/

.

constraints on those transitions. (
 DAPR’s debugging consists of diagnosis and repair. These activitles are characterized by the
various data structures on which they operate. PATN employs foar rebresemauons for a

~
[

procedure the problem descrlpuon ¢ model"),' the ’proccss-(' chrontext”), the code, and, the plan

4

derivmom The theory prov{des a notion of ann?tatlon as derivation trees, whncr sumMarize tHe *
deﬁgn decislom leading up to the actinal code. This thorough, hierarchical representation of the
history of: the soluﬂzn allows fEhLa r analysis of debugging which we beljeve will be of
practical value: for example, in the gon*ruction of programming environments. <

The ideas in this 'es.say have d‘evelopfd,f rom those of Papert [1971a,b; 1973), &y@n 99;3].
and Goldstein, [I974‘1 To p'rovid_e perspective on its relationship to earlier work, tﬁ;\@rrent theory

was co;masted wlth.SUSsman's HACKER. The claim that the present approach subsumes that of

, HACKER was defended by Yse\zeral_specif ic argurv;ents. The rétationship of HACKER's bug types

to‘the current classification schen‘vc was discussed. ' Co _/

(
|

‘4

e ' » ' “ !

Structured Planning and Debugging !) Goidstein & Miller

»
’

" In the remainder of this section, we describe various applications of the Structured Planning '
and Debugging paradigm: to protocol analysis, structured programing, and computer aided

instruction.

-’)\ . , ' N ;
"+ 6.3, Preiocol Analysis |
» ‘ - 4
In [Miller & Go!dstem I976b], an ‘earlier version of the planning grammar was applled to the
-]
task of par‘sing elementary programming protocols. The recognition process was performed

manuallly, by the authors. Cﬁtlﬁuing our strategy of .applylng concepts from com'putauonal‘

linguistics to problem solving, we ptan to experiment with the application of various algorithms

|

A_critical question that arises Is whethey PATN provides a. spanming model for eleméntary

for natural language comprehension to the task of automated protocol analysis

’ i .
human problem solving. By this we mean- if PATN is put i® a mode wherein © generates all

possible solutions to a giveﬁ problem (primarily through successive reformulations), will the set of

programs produced include most of the successful solutions generated by people? More critically,
» can PATN's solution process — at an appropmte level of abitraction -- mimic that undergone by
human problem solvers? More specifically, s the protocol analysis task profitably approached

f ro@he snndpolnt of determining which g PATN's possible plans for a given problem is bctng

-

used? -

-

We do not know whether PATN will be sufficlently powerful to include all of the plans
typically pursued by students in elementary Logo programmlng tasks. If so, it will represent a step

forwagd in inf ormation processing psychology [Newell & Simon |97212' Our preliminary analyses
N .
of many Logo protocols have been encouriglng But extensive experimentation is needed before a

dcfinmve*answer wm be available. Fortunately, we are*in a good position to attack this set of

\
psythological questions because the Logo project has collected extensive data on student

performance [G Goldstein 1973; Okumura1973}

o

> determine whethef this approach is viable.

¢

6.4, Structured Prograyming .~

Structured PLnnmg and Debugging Goldstein & Miller

; ¢ .
(Mitler & Goldstein 1976d) presents a preliminary design for PAZATN, a PATN-based

automatic protocol analyzer. In applying PATN to protocol analyslé‘we envision modeling the
tndividual by inducing, from previously analyzed pr;)tocok. a personalized (modified) version of
the i’lannlng ATN. T'i:e success of these models will be judged by thi extent to, which they
successfully predict subsequent behavior on the task. Afﬂn experimentation is needed to

. The parsbng problem is complicated In analyzing human protocols by the possibility of
irrational phnni?;g errors and execution errors, in addition to the rational planning bugs discussed
earlier. Because of the increased uncertainty introduced by pomble mistakes in executing a

-statement of code or constructing an ungra;nmatlcal plan, we envlston taking advantage of the

poverful search procedures created for pgrsing ;EeJch utterances (such as those des;ﬂbed by

Allen [l975] Woods et al. [1975), Paxton & Roblnson {1975}, and Lesser et al. [1975)), in which

uncertainty in the auditory interprmuon similarly complicates the parsing process.

»

tho new reality is that “ordinary f)rogrommers with ordinary care, can.
cous'stently write-program segments which are error free from the start. -
Harlan D. Mills, “On the Development of Large, Reliable Progroms,'-Proc.

iy . IEEE Synp. Computer Software Reltablity, 1973, p. 185,

It is sometimes argued by proponents of structured programming that discipline in coding cah
eliminate all bugs s The Structured Planning and Debugging theory sheds some light on this issue.
Rational bugs are unavondable (or, at least, not worth avoldlng) They correspond to heuristic
planning judgmenu made whgn nabetm'"ﬁteria were avalla‘ble as of ten occurs when
programmers are solving new problems It 15 probably through the experience of whether their

L]
default heuristics succeed or fail on a new class of problems ;hat lndmduals acqulre skill. On the

other hand, irrauonal errors:and syntaétic phnmnﬂugs must surely be incrnsed by unstructured,

careless prognmmgng. It is this class of: errors, not rational. bugs, tat we believe the structured

: 4
. . 79
: -7

23

N . ‘
Structured Planning and Debugging 7 Goldstein & Miller

progrimmlng movement as 2 whole has in mind, in calling for more dlsr.;ipllned plannlng and

-

codtng.‘

Hence,.\potentlal application of fur theory is to the design of lmproved envlronments for'

programmlng In [Miller & Goldstein{i97%c) we have presented the design for a programming

S,

editor called SPAD@-O, which encourages articulate, structured plannlng uslng a context free

.grammar. The virtues of working within such an edior, in which programs are specified in terms

¢
.

o their plans, ‘include: (a) expressing one’s programming. ideas in this fashion can.lead to,

increased clarity, by drawing the programmer’s attention to the nature of the plan being applied;

-

‘ and, (b) artl'cuhtink the plan increases the system’s leverage to aid in the diagnosis and repair of

bugs.
However, context free énmmars have limitations which prevent SPADE-0 from exceeding a
fuln phteau of utility. These limitations can be overcome by representing plans; not in terms of
context free rules but in terms of an ATN Consequently, we envision using PATN to, extend the
capabihties of the SPADE editor, creating an improved version, SPADE- 1. Qne might instruct this
improved editor to change a partlcular subgoal from being accomplished by means of
lDENTlFlCATlON toa plan based on DECOMPOSITION by CONJUNCTION The reason

might be that the original subprocedure fetched from the library had: unacceptable side ef fects.

SPADE-, the PATN -based editor, could-then lead the programmer through a sequence of top-

¥

oy

down planning decisions that wouid realize the new plan. Because of the availabllity of PATN -

SPADE-| could, among ‘other improvements, assume greater responsibilities concernlng low level "’

cading decisions. ‘ ‘ \ e

4

PATN isa top-down structured prognmmer As a result, the SPADE -1 editor could assist the

programmer 1n exactly this process. The advantages of such an editor over conventlonal

- programming envtronments derlve fmrn (bruader and deeper taxonomy of planning concepts

Thus, while &'e believe that Dljkstra and his colleagues have pointed in the fight direction, in
AN

-

~
]

. v 4 l—,

80

-y o »T & ,
s .
. > . e . 3

,StMtured_Phnnlng and Debugging M .« Goldstein & Miller

calllrlg for a structured approach to programlnlng (see, g, (Dahl et al. 1972]), we also believe that
. rl N ‘ [f
" the type of research involved In constructing PATN provides an essential next step: detailing
exacily what rational planning involves - L

. Ing utulle research, we' plan to construct the PATN-based SPADE -1 editor, and to experlment

-

wlth\ts performance as a programming tool. The criteria by whlch it may be judged are the

extent to which programmers find it yseful, and its éffect on program wrltlng and debugglng time.

'6.5. Al-besed Computer Aided Instruction

In designing Al-band CAl programs, three critical problems are: (a) inducing a model of the
student; (b) haring L modefof'theexperr and {c) generating a tutorlal plan-for guiding the
student toward expert cornpetqlce PATN may aid in the resolution of these three problems in the

deslgn of CAl systems for tutoring programmlng and probler(solvlng

. We have dlscussed how PATN may provlde an important mode<hg tool. Implicit in PATN |

is also a theory of learnlng. From the PATN standpoint. learnlng is the acqullsltlon of new

gnmmatlcal rules, new semantic variables, and new pragmatic constraints for decldlng between

akernative plans Hence, a PATN-based tutor could compare the topology of the personallzed

*

ATN lnduced for the student to the full PATN grammar, and choose a difference as the lssue to
-

be taught Altematlvely. the tutor could parse a given protocol compare it with how PATN.would

\
have solved the problem and utilize the differences as the specll‘rc Issues to be discussed with the.

i student in analyzlng his or her. performance on the problem. For example, a pragmatic planhing

~

bug mrght be.,attrlbutable to the absence of a relevant critic. In this fashion, we attempting to

‘extend the Issues and E«amples paradigm, developed by Burton and Brown [1976] for an .

_elementary arithmetic world, to the more complex environment of programmlng and problem

{

solvlng G m[ldsteln &M iller l976:1 y 4

Of course, there are many other subtleties in dessgnlrtg intelligent computer tutors not touched

PR | i v *
Q s~ ¥ ’ ! h >

La

. Planning strategies, and whether the strateg!es that are known are‘brganized in a snccessful'

o .

!

Structured Planning and Debugging L o ~ Goldstein & Mitler

upon here, such as: (a) in what sequence+should the knowledge be taught? (b) how intrusive

should the tutor be? (c) how canathe tutor's behavlor be explalned to the stur‘ent s0 tl'w'at' ity actions

< are not mystifying? and, (d) cah sufflclently powerful natural language capability be prS‘Nded 30

'tﬁat the student can Interact éomfortably with the tutor? Nevertheleys, PATN is a netessary .§x ‘
%
ingredient, as it provides a model of the planning expertise whiuK/Zeconve’yed by the tutor. *

It is also worth observing that automatic |3rotoco| analysis'and student modeling, even without

automatic tutoring, could be valuable to a human teacher. The parsed protocol and student model '

-

might allow the teacher to notice more easily when the student is relying on a limited lexicon of

fashjon This kind of detalled\descriptlon of the reasoning process offers the possiblllty of

e

escaping from the tyranny of standardlzed tests, whose outcome Is an uninformative numerldl

’

score.

6.6. The Science of Heuristic

et
Polya_has alled heuristic the study of the “means and methods of problem solving” (l%2

p- vil Hus various boolu [1957, 1962, 1965, 1967] of fer Inslght into the nature of problem solving

discussing skills and abllitles far in advance of the most lnteiligent Al programs. Bt heuristic, as

‘ * -~

,ﬁolya devilops it, is not yet a sclence. There are no formal representations for problem solving

. .
conicepts; no rigorous means for experimenting with alénatlve theories. The use of the computer

plement and experiment with such theories makes the study of heuristic'a science. PATN

represents a small contribution 1o this enterprise by experimenting with a particular procedural
. i r

-

representatnon -- the augmented transition network.
Fhe most common®riticism of even the most insightful analyses of problem solving-is -- "but

how can | realize when*a particular. problem solving strategy is appropriate?” The gap that exists

between lnformal. iftuitive discussion, of thinking, and specific, useful guidelines, is illustrated by

rd

F . 82 .~ | .'

.) : . " :
B " . L ' . - . . L. .

. -) L. . - R . .~
".- ’ Structijyed 'ﬂnlng and Debugg-lng . w.% .~ . Goldstein & Miller T
- . . * - . ., .

tl\o-self-descrlpuon of the gre,rﬁi’tl\ematlclen ﬁolncarre clted in gectlon two: . .5,
. "o ‘ . N
L. ‘ Every diy l sol, down at my lel.aleL end ‘spent an hour or twg lrymg\o greal ':,
L . number ot combinatiens;'and | arrived at no result. One night'l took some. black d e,
. . colfee, conlnry to my custort, and was unable to sigeh. A host of udeas‘kep.l' . ‘e -
. ﬂ: : surgmg Jmy heed. } could aimost feel lhem jostlipg one another, Onlol two ol_ .7 [
' them éopjesced, so to speak, to°form a slable compinstion. - B
- : " Pomcaro,-H. "Mathematical Discovery,” in [Rapport 1963, p. 132} -
' _Surely we can "do better than ad\m?ng't student to drlnk coffee befdre going’ to?(-
. 3 '
' ‘Attempting to structure the skll/of various f lelds. ‘whether mathematlcs or carp:ntry =in &
Q - - = l\\
“ form that provldes useful, preclse guldellnes to students is the fundamental fask of educatlon ‘e
e *
l!" arch’ in computer science, computatlonal Imgulstlcs and artlflclal intelligence is f lndlng ‘-
. representatloﬂ& for actiwe ‘knowledge tha‘re precise. powerful, and perspicuous. Ultlmately.
" . . . / = /-
»PATN $ most important. contributlon is as an expe'\l?nent in this veln explorlng whethﬁ
) -
partlcuhr compmatlonal formaliém is useful asa retresentatlon Qf problem Solvjng skill. As such,
it a vltal par}of that Invemg&on ol' the design process whlch Sfmop"callﬁor in the quo&tlon T
s’
- ! .) .o .

‘ . wlth 'Mch we began thls sectlon .. Y . -~ : L ' . .t 7 N
- ',a ?(/—-/‘ . “; . e . © . . “ : » . . . ;\ . .
..‘,/,0— . B » ?‘ <.t . . . « - F/ .

3) C . Ty e i h 3 ’ - ot
- s - . , —
‘s._' . AT . _/\ - .
- = N\ A] 'y * [
_57;7‘7 \/‘ - U ¢ A; h . ’) . \ X . . v
. . - * . - T . o o o
- . o N » . . »
: . ,’} 1 ’ .. B - . S
- . ‘ -t ' - > - ¢ ¢ - \
y-o - - }
« ' ') ‘
. _' B M ., . o .’ . . . ¢ - 4 ‘ ’ K] .
p R A LI A PR .o v‘ l‘ ‘ g y .
: 83 . .)
t ! ») ») . .' : ’ , * ' B
» L] ’ ’ ‘ . - .
P - . . . » o ¢ o
‘L- " .“gﬂ ' - <. “' ‘ -~
. . LY ‘ bl - ‘ - ‘ \
. ¢ ' .] N4
. A - ' - 'R .;‘;. \ "
.. \

]

-

I’ . ‘ \ - M) . . - "‘@
Structured Planning and Debugging ' B LT : .. Golditein & Miller ,
| o . NS
D - A Rotes- . .- ' R

3 .

L. The name Structured Planning and Debiigging emphasizes several themés.‘ 0@!“ is :
hat the use of concepts from computational lingustics has been. helpful to us in structuring our
heory. Expressing a cognitive theory in terms of a computer program, while perfectly rigorous, is
not necessarily perspicuous. For example, in the current essay the use of the ATN helps us to

: orgartize the procedural knowledge we are trying to characterize. A second theme is that problem
;otvlr:g consists| primartly of two complementary activities.. planning and debugging. Previous
reseafch has typically emphasized only one or the othet, at the expense of both. A goal.of our .
theory 1s 8 prgvide an Integrated understanding of both processes. A final theme is that detalled)
study of the pfoblem solving involved-in program design 15°a prerequisite for completely fulfillipg

- the structur:d\‘rogrqn(ming movement’s ob jectives, such as program reliability -We wishge
e!nphasi?e the”potentla'l role of our research in this énterprise.

.

2. See also [Woods, Kaplan & Webber 1972]. Woosls' (1870) definition was an elaboration and
formalizatipn-of earlier work by, Bobrow and Fraser (1969), and by-Thotne, Bratley and Dewar
‘1%68) Woods attributes some aspects of the ideas to Kuno [1965] and Conwhy (1963]. ’

-~ . . ~ , “
formallsm for planning concepts, we have also found the context free grammar representation to
be a frutful | crlhuoq of plannirg conceptsfor certain purposes, such as parsing human
programming protocols This suggests that Heidorn's (1975) ACFG (augmented context free
_ grammar) formalism might be an effective alteinative to the ATN Its virtue®s that the
wrélationship to the CFG characterization of our ideas would be more direct Moreover, our actual’
implementation of PATN might tyrn out to be closer in spirit to an ACFG modél than 'an ATN.
To some extent, the distinction is secondary, since ACFQ’£ and ATN’s are not only formally™. |
equivalent an_power, but also structyrally comparable in a straightforward manner “In any case, f}
while . ACFG's suggest interesting possibilities, resolution of this issue goes beyond the current -
. Ppaper - r » . © . ’

Q . 3 While.the empﬁasns of the current essay I15 on lnv'emeatlné the appropriateness of an ATN, :
W

L

s) : = .
" 4. We should_emphasize that we do not regard this taxonomy’as being either complete or

. . unique. In later sections we. discuss particular ways 1n which it is incomplete. In [Miller &

‘Goldstein 1976bl\we presented a different version, in the context of parsing a student protocol. ,
The earlier taxonjomy-emphasized examining the directions frém whence-2 planner could obtain

- 4

guidance; “the current one emphasjzes examining the logtsti¢ description of ‘the problem at” hand. o
" While-our intuitioni Suggests that our current xersion Is an imprevement, persuasive evidence for
favoring ,a given classification of ‘planning concepts must await implementation and. systematic
experimentation. The reader is referred to [Miller & Goldstein 1976a) for an overview of our
- .research project as a whole. N A o, -

) o ’ . 0.
) © . 5 Ths is an oversitnplification. 1 every solwed problem were added to the answer library,
* . the experienced- problem s ver might ke overwhelmed by tremengdous numbers of uninteresting
. soldfions: The possibility of “intelligent forgetting” is a subtlé.issue which we are-not ‘currently in
a po;'mon.to address.] . o, e

. 6 Our use of, the term mode! should_nm be confused with its use in model-theory, The name

.7 -clash 1s uekoitundte, resulting.from histogical accident. In most cases our &m model can be

uplac'eé' by the phrase problem specification without altering the meaning
. R - .] .] ‘' A

. CLN
- ' - . A

'{_'3 g 5§~ ' ’

13 - + > P
. PN . -

. .

H

~N

. M . f * . . " , . * ’
L Strwwed Piannin; and Debugging™ . 78 ; i Goldstein & Miller) '
' 7 The predicate cakulus is the probiem description language of mathematics as well as a
variety of Al programs, most nOtabiy the STRIPS series of problem solvers [Fjkes & Nilsson 1om;
Fikes 1972 Fikes et al. 1972). Alternative problem-description languages, based upon such concepts
as framesTMinsk 1975, Winograd 1975, Goldstein 1975], might pr; increased expressive power;
, we have.yet to thoroughly explore this issue. For our ‘purgoses in this articie the-problem
»+ - descriptions areygmply 4, conjunction of properties and’relations about some set of objects. As .
such, they are c8mmon to most descriptive schemes including the predicate cakulus, frames, and
semantic nets [Quilkan, 1968; Winston 1975, Woods 1975]. In practice of course, aur problem /
. -~ specification langdage Is actually LISP but the subset-of LISP which is used can be V“V ina

varigty of guises) L 3 -

8. 1tis posslb.le that problems shouid also be indexed by their Pre Mddels, if any. This would ~
enable the system to support a kind 8f forward chaining. At the present time, the additional
* overhead which this would entail dops not seem justified 'by its possible utility at least for the
simple blocks world and Logo picture prlibierns we are considering

& :
’ - 9 For a‘hpre detailed discussion of the |ink between turtle primitives and model descriptions,

see chapter six of [Goldstein 1974]. ™A gloSsary of primitive predicites for describfng elementary - T T T

\ " JLogo pictures may be found in Goldstein’s Appendix B. . '

I‘)Iy impiementation and experimentation can ultrmately determine whether a given set of

. reformu tion techniques will be adequate. A related problem for, future research is tp construct a

-« program that attempts to induce the model from a sketch. ‘The potenfial ambiguity introduced by

. such a modui would place an e:en greater burderi on the rei‘ormulation strategies
LY

Il. See {Polya, 1965 ch. 9] fora reievant discussion of Problems mithin Probjems

12. There are of ourse many additional reformulati iques. Many compiex issues
b involving change of regreséntation atise, suggesting rich areds urther research. v

L . R [f i » & - .

- ' 13. Strictly speaking what Sacerdoti terms procedural-nets are actually, parsially ordered :
program steps. The authors are indebted to B. Kuipers for reminding them that such partal o -
orders are restricted cases of networky, with additional propesties useful to bosir NOAH and

3 ’.PA"TN - ' | ')

- . & P . -
* = & 13

N 14. An alternative Is to save the solutions to subproblems only in a werking lemma library
The issue 1s whether geachﬂm is permanently stored for future reference, or only saved for the
duration of the problem d. . Techniques for determining the potential future relevance of
sub_probiems/ are fot iscussed in this paper. t .. e g p
. \ . -\ N
15. We introd’ee DAPR he:e because we have fdund that the metaphor of deslg'nlnga .
program 1s a usefu{"way (0 organize ozr ideas.. We da, in fact, intendJ for thisidesign to serve as \ ./ X
« ' therbasis for inglementing a depuggifig module. At the same time, we are awarg that the set of 0 ’
ideas presented are incomplete* architectu‘e of theJdebugging moduie DAPR Is only\ parti

specified in this repogtes

A

A

‘¥, ‘Stmcu;red Planning and Debugging W o - Goldstein &“Mllglier

~ . . 4 . R
P . . ' . - .

16. This view of the causes of b gsisa simpliflcatlon. Some bugs have multiple underlying
causes; a situation which greatly complicates the troubleshooting process, Nevertheless, the
techniques deveﬁ'1 here are useful, in that proceeding under the heuristic assumption of a slngl’e
capse’is often redibnable even in‘cases where the assumption™turns-out to be false’ ')

LI
., N

‘ 17. In the general case, model diagnosis requires.addréssing dif ficult’ problems of symbélic
evaluation (see, e g, [Yonezawa 1976)). For most of the programs discussed here."a simpler
approach, performance annotation {Goldstein 1974] is possible A difection for research is to extend
the range of programming. constrigcts wh(lc,b' can be.verified by the model diagnosis module. -
.y . .
18. DAPR's three diagnestic techniques are p.resentgd-l'n fouéhl‘y the order 1n which they
' would be applied. It 1s conceivable that this &rict erdering would not be adequate That Is, there.
may be debugging sm.'non‘s for which process diagnBsis should be.applied ‘priar to rmodel
diagnosis, or even situalons for which the most effective debugging. Jtrgtegy’ would be alternate.
applications of both strategies, and so on. In the first implementation of DAPR we will
- experiment with the simpler approach ' A . oot

- . ' v
™~

\,|9. Careful evaluation (Hewitt & Smith 1975; Goldstein 1974; Sussra?n 1973) is @ dlagr;‘ostlo tool, -
whereby a program is testeg/by interpreting it in an extremely cautious mode, with extensi¥e
checking of argument typeg;rerequls'ite satisfaction, etc. During normal evaluation it would be
prohibitively expensive to r uglne'ly inctude such checks. ~ = '

20 PATN's default arc ordering and arc c%\stralﬁt/s‘/are designed to ensursm non-linear
planning 1s pursued if and only if a specific pattern of inferaction 1s détected. The local decigjon

» process may b&described as follows. PATN first tries the two nonlinear arcs Control trapsfefs to
the corresponding states only when an NLC or NLD predicate "accepts” the model Otherwise, the
linear decompgosition & purwed - < . . :

1

21. It'1s worth considering the' relationship between Newell & Sifon’s (1972] production system
model and PATN. Strictly, ATNs are isomorphic to production systems. in formal power; they are
also directly analogous 1n internal structure. " A production system copsists of a set 'of

-~ [patternxa action] rules which operate over a finite number of short term memory*(STM) locations. |,

'An ATN may be thought of as a production system in which a particular. slot 1n STM, the xldle.-gs
,disunguished The arc transitions correspond tp rules, where arc comraints map onto the left hand
sides,.and aré actions map ontg the right hand sides. - Distinguishing between the "state” register
and ‘other ("ddta”) registers seems to have the'virtue of 1mposing greatet structure on the otherwise
homogene‘ous collection of productions. All the repnted advantages of rule-based" systems, such 33
" modularity, still apply, The other.STM slots directly correspend to the registes; of the ATN

model. Moreover, the ATN model, suggests a natural decomposition of the knowledge in a given

rule, into syntax, semaptres, and pragmatic constraints- On€ apphication of this breakdown is in

teaching: rather than(tutwng an entire rule, it may be that only one part need be taught. (The
* authors arg indebted t kKunpers for -emphasilgr'ng the importance of this coq\parlson.)

. H

/e

.

Structufed Planning-and Debugging

- 80

S

coldsqr; & Miller

Y o . S
8. Relerences .
») . " . - . _ &
. e [-~
(Aho and Uliman |972]) -) ‘ ’ - '
.) Aho, AV, and].D. Uliman. TAe TAeory of Parsing, franstation, -and Compiling (Volume I
Parsing), Prentice-Hall, Englewood Cliffs, N_J. 1972. \ . _ ‘
o [Allen 1975) g L ‘ .
Allen, James F. “A Speech Understanding Systera Based Upon a Co-routine Parser,” Advance
Papers of the Fourth International Joint Conference on Artificial Inteljigence, Tbilisi, Georgia,
*_ " USSR, September 3-8 1975, pp. 455-460. ' ’ » . .
« - ‘ .
(Bobrow .and Fraser 1969) - _ : »
. Bobrow, D.G., and. J.B. Fraser. "An Augmented State Transition Network Analysis
Procedure,” Proc. Internat. Joint Conf. on Artificial Intelligence, Washington D.C. 1969; pp.
7B57-561. ' R :
-. » . .
{Burton & Brown 197§)- " . > = ; .
Burton, Richard R and John Seely Brown, “A Tutoring and Student Modeiling Paradigm
for Gaming Environments,” in R. Colman arid P. Lorton Jr. (eds). Computer Science and
. Education (Advance Proceedings of the Associatien for Computing Machinery Special Interest
% Groups on Computer-Science Education and Computer Uses-in Education Joint Symposium,
. Anaheim, Cal), SIGCSE Bulletin, Volume 8, Number | (SIGCUE Topics Volume 2),
. February 1976, pp. 2%6-246. ' T ¢
(Conway 1963) : _ _ A
Conway, M.E. "Design of a'Separable Transition-Diagram Compiler,” Communications of the
Py ACM. Vol 6, No. 7(July 1963),396-408. -~ v s
Eﬁt etal 192" C SO :
. Dahl Ole- Johan, Edsger Dijkstra and C.A.R. Hoire, Structured Programming, London,
. Academic Press, 1972. - C o PO .
. ‘ . , i N ~ !
(Fahlman 1974) . . An B :
Fahiman, Scott; "A Planning Sy for Rohpt Construction Tasks,” in Artificial Intelligence,
vol. 5 19M, pp. 1-19. t : v
" (Fikes1972) . ‘ ; o ! L -
. Fikes, Richdrd E., "Monitored Execution of Robot Plans Produced by STRIPg in-.
Information Processing, Vol. 71, 1972. .~ : -
o, . .- * .
Y~ "EFkes & Nilsson 1971) ‘N v , .
\ Fikes. Richard E. and™Wils J. Nilsson, “STRIPS: A New Approach to the Application of
‘ U Theprem Proving to Problem Solving,” in Artificial Intelligence, Vol. 2,197, pp. 189-208./
.‘/ - "L - . R
"N [Fkeseal lom] : ’ '

Fikes, Richard E. Peter E-Hart and Nils } Nilséon, "Learnin

Robot, Plans,” In Artificial Intelligence, Vol. % 1972, pp. 251-288.
~ ’ . ’
CUE

i

g and Executing Generalized

_—

L

a
»oo

-

-/

. [Goldstein 1974)

]

) .
Structured Planning and Eebugging ' . _ Goldstein & Miller’

. . \ : v
’ (G. Goldstein 1973] - ‘ l .

Goldsteirf, Gerrianne, LOGO Classes Commentary, Massachusqits Institute of. Technoiogy.
Artificial Intalligence Laboratory, LOGQ Working Paper 5, February, 1973.

-

Goldstein, Ira P.. "Understanding Simple Picture Programs,” In Artificial Intelligence, Vol. 8,
No. 3, 1975 and 'Massachusetts Institute of- Tecbnology, Artificial Intelligence Laboratory, -
Technical Report 204, September 1974. o ' ,
(GBidstein 1975)] ,
Goldstein, Ira P, "Bargaining Between Cclls." in® Advance Papers of the Fourth International
Joint Conference on Artificial Intelligence, Tbilisi, Georgia, USSR, September 1975, pp., 175-180,

- | | . ¢ {
J[Goidstein & Mller 1976a) .
Goldstein, Ira P, and Mark L.-Miller. Al Based Personal Leaming-ﬂnvlronmnu.-.,Dtrmlmu
for Long Term Research, Massachusetts Institute of Technology, Artificial ‘Intelligence
Laboratory, Memo 384 (LOGO Memo 31), December 1976a.

[4 .

 [Heidorn 1975) - _

L [Kay 1973) At ' : ‘

Heidorn, George E. "Augmented Phrase Structurg Grammars,” Theoretical Yssues (n Natural

Language Processing, Cambridge, Mass., Association for Computational Linguistics, June 1975.

. : s g ’

(Hewitt 1972] : _ ' -
Hewitt, Carl, Description and Theoretical Analysis (Using Schemata) of PLANNER: A

Language for Proving Theorems and Manipulating Models in a Robot, Massachusetts Institute - -

. of Technology, Artificial Intelligence Laboratory, Technical Repprt. 258, Apnil, 1972.
[Hewitt & Smith 1975) . < ’ - o A
Hewitt, Carl, and Brian Smith. “Towards-a Programming Apprentice,” IBEE Transactions on
Software Engineering, Volume SE-1, Number |, Mirch 1975. R
(Kaptan 1973] - - ‘)
Kaplan, R. "A General Syntactic Processor,” in R. Rustin (ed.), Natural Language Processing,
Algorithmics Press, New: Ygrk, 1973. ¢

.“,

KaygMartin, "The MIND Sysfem.” in Randall Rusiin (ed), NatuWage Processing, . -
Courani Computer -Science Symposium 8 (December 20-24,1971), New York, Algorithmis

Press, 1973, pp. 155188 T

. @ i

- » P

{Kowalski 1973} . " e ’ ' Y ’
Kowalski, Robert, Predicate Logic as ¢ Programming Language, Univensity jof 'Edinburgh,
Department of Computatignal Logic, School of Artificial Intéhigence, Memo 70, 1973,

(K unq 1965) L ’ : .o !
"Kuho, S. "A System ‘for Transformagional Analysis,” In Regort NSF-15, Computer
Laboratory, Harvard Un!v'er‘sityt. Cambridge, Mass, 1965. ° ' ! '

v .

»

4

Structured Planning and ing8 C " Goldstein & Miller
N\ "&} wenEn

o N

[Kuno 1967) SfweE
Kuno, S “Computer Anaiysisief | al Languages,? Promdlnp oj Symposia in Applied
Mathematics, Volume 19, American Mathematical Society, 1967.
Iy, - X ‘ .
(Lesser et al. 1978] - " : -
Lesser, V.R., RD Fennell, LD. Erman and Ix Reddy, "Organization of the Hearsay Il
r

Speech Understanding System,” in IEEE Trdhsaction} on Acoustics, Speech, and Signal
ProgessipfVol. Assp-23, No.. 1, February 197, pp. 11-24.

(Miller & Goldsteinf976a] -
- Miller, Mark L., and Ira P. Goldsteln Overglew oj a Linguistic Theory-of Design,
, Massachusetts Institute of Ter.hnpbgy Artificial Intelligence Laboratory, Memo 388 (LOGO
Memo 30) December 1976a. £)
o . —
- (Mifler & Goldstem 1976b]
Miller, Mark L and Ira P. Goldmlp. Parsing Protocols Using Problem Solvtng Grammars,
Massachusetts Institute of ngmoiqy. Artificial lntelhgence Labomory. Memo 385 (LOGO °
~ -Memo 32), December19%b. * - ——

» /

(Miller & Goldstein 1976c) '
Miller, Mark L., and Ira P. Goldutéin. SPADE: A Grammar Based Editor for Planning and
Debugging Programs, Massachusetts Institute of Technology. Artificial Intelligence Labontory -
. Memg 386 (LOGO MermSS).Dmberlm /

[Miller & Goldstein 19%6d] ' : %..
Miller, Mark L., and Tra P. Goldstein.n PAZATN \ A Llngutmc Approach fo Automatic
, Analysts of Elementary Programming P. Artificjal Intelligence Labontory. Memo 388
(Loco Memo 35), December 1976d. - \

o~

(Mils 197) ' S ’
Milis, Harlan D. "On the Devebpment of Large Reliable Programs,” /EEE-Symposium on
' Compum Sofware Rellabtm). New York, April 1973, pp. 155-159. :

— {Minsky 1975]) .
Minsky, Marvln "A Framework for Representlng Knowledge,” in P. Winston (ed) The
P:ychology of Computer Vision, New York, McGraw- -Hil, 1975, pp. 211-277.

(Minsky . Papert 1974)

Minsky, Marvin and Seymour Papert. Arttﬂclal Intelligence, Condon Lectures, Oregon S&ate :

i(uem of Hbghcr Educanon 974
[Moore 1975} - ' ’

Moore, Robert, Reéasoning from Incomplete: Knowledgs in ¢ Procedural Deductive System,

. Artificial Intelligence Laboratory, Massachusetts Institute of Technology, “Technical Repon

347, December 1975, - \ '

- -
- . !

L4
1w

» 50

R Structured Planning and Debugging ~ + 83 o ‘\Go%neln& fller ©
(lel&SimonlO‘l?] T

7 Newell, Allen .and Herbert Simon (eds) Human Problm Solving, Englewoqd Cliffs, 'New
Jersey, Prentlce-l-lall. Inc, 1972.

(Okumiira 1973)
Okumura, K., LOGO Classes Commentary, Massachusetts Inmtute of Technology. Artmchl -
Intelligence Laboratory, LOGO Worung Paper 6, February 1973. L T

[Papert 19Ma) .

\:apert Seymour A, Teaching Children to be Mathematicians Versus Tcachlng About

athematics, Massachusetts. Institute of Technology, Artmcial Intelligence Labo@tory Memo

- 249, 197. \ . ’3 , N
[Papertmnﬂ ; . I S - ST

“'“ Papert, Seymour A, Teacking Children Thlnung, Massachusetts Institute of Technology
~ Artificial lntelllgence Labomory, Memo 247 (LOGO' Memo 2), 197 °

+
% .

(Papirt 4973) - < '
. © T T Papert, Seymour A Uses of Technotogy 1o-Enhance Bducation, Massachusetts lmtitnttvf
' - echndlogy, Artificial Intelligence Laboratgry, Memo 298 (LOGO Memo 8), June 1973.° ,
. .o N o
" [Paxton & Robinson 1979) \
. . Paxton, William and Ann Robins§p, “System Integration and Control in a Speech
Understanding System,” in American jou of Computational Ltngumm. Vol 5. 4975, pp.
518.
. (Polya 1957 = . | : . ; .
. ~ Polya, George, How To Solve lt, New York, Doubleday Anchor Books, 1957. - °~ - ‘
-) 4 ’ - '
(Polya 1962)) ' .
R Polya George, Ma:lmmuucl D(uozmy (Volume I) New York, john Wﬂey and Sdns |%2 °:
[Polya 1965) o e s
, Polya, George, Mathematical Ducanv) (Volume 2), New York, john Wiley and Sons. 1985. -
Polyaleen - . ' . AT
Polya, George, MatAematics an@ Plausible Rca:ontng (Volumes | & &', New Jersey, Princeton -

University Press, 1967&3. . .

{Quillian 1968) ‘ ‘\,‘ ' .
Quillian, M. Ross, “Semantic Memory in M. Minsky (ed.), Semangic Ipformation Procmtng,
- Cambridge, Massachusetts, The MIT Press, lgss , _
' (Rapport 1963] " . b . | e
Rapport, Samuel and Helen Wright feds), Mazhmatics, New York University Press, 1968,

— ’

!

S LN

Structured Pianntng and Debugging 84 Goldstein & Miller
\ L
“ ’ :
(Rubin 1975] . '
- Rubin, Andee, Hypothests men ang Emlwam m Redical’ Diagnosis, Massachusetts
Institute of Teéhmb;{, Artificial Intelligence Labonwry Technlcal Report 36,]amm‘y 1975

(Sacerdoti 1975) | :
Sacerdoti, Earl, “Thef Nonlinear Nature of Plans,™in Advcnce Pcpm of the Fourth
¥ International Joing Conference on Amﬂtul Intelligence, Thilisi, Cevrgla USSR, September
lﬂ& PP M"Aa .

? ’

. [Slmon 1969)

- Simon, Herbert A. The Sciences ufthc Angficial, Cambridge, Mau, MIT Press, 1969.

S 2N

[&qman 19m) .
Sussman, Gerald Jay, 4 Con,buumnal Model of Skill Acquisition, New York, Amérlcan
Elsevier, 1975, and Massachusetts Institute of Techmlogy Artificial lntelrgence hbontory,

Technical Report 297, 1978
t

(Suuman 1974) - e
Sussman, Gerald juy. ‘The Vinuous Nature of . Bugs,” AISB Summer Con]mnu. july 1974,
| pp- 224237, : , .
(Thorne et al - 1968] - S) °

Thorne, .. P. Bratley and H. Dmr..'The Syntactic Analysix of English by Machlne in D.
+ Michie (ed.), Machige Intcllt(am 7, New York, American Ehevier, 1968.

'Y

tw InograMJ

. Wlnograd Terry, Undmtaudln(Natural Language, New}ork Academic Press, |972
‘& e :
Winograd |975] *
Winograd, Terry,-"Frame Representations and'thé Declaratlve—Procedural Oomroversy, in D.
Bobrow and A. Collins (eds.), Representation gud Understanding: Studtes in Cognitive Science,

New York, Academ&eu' 197, pp 185-210. . - -

.

.[Winston 1975) ¢

Winston, Patrick, 'Learnlﬂg Structural Descrlpuons from Examp!es in Patrick Winston (ed.),
The Psyclaolon of Campum Visgn, New York, Mcan~Hlll 1975, (pp 157-209.

(Woods 1970) - . :

»

¢ Woods, Wllllam A, "Transmon‘Network Grammars for Na\xal Language Analysls. o

Cmnnuntccuom of the ACM Vol. 13, No. lO October, |970 PP 59|~606

]

"y "«‘[Woodsl975] A e .

Woods, William "Wlms in a Link: Foundations for Semantic Netwo‘ks .in D. Bobrow
and A. Collins #as.), Representation and Uudmtand!ng Studies in Co;nmw Science, New
York, Academic Press, 1975, pp. $5fl.

-~

»,

.

[4

-

R

)

-

-

. . Structured Phanning-and Debugging . 8% :
(Woods et al. 1975])
Woods, William A, Madeleine Bates, Geoffrey Brown, Bertram Bruce, John W. Klovstad and
Bonnie Nash-Webber, Uses of Higher Level Knopledg{l-n—- a Speech Understanding System,
_Bok, Beranek and Newman, Report 3240, Deceftiber 1975, <

.. a .

tWoods et'al 1972) . : . . ‘

- Woods, William A, R.M. Kaplan and Bonnie Nash-Webber, The Lunar Sciences Natural
Layguage Information System (Final Report), Bolt, Beranek and Newman, Report 2378, 1972.

* [Yonezawa 1976) -~ -~ * - - . : :
Yonezawa, Akinoris*Symbolic-Evaluation: as an Aid to Program Synthests, Massachusetts.

. Institute'of Technology, Artificial Intetligence Laboratory, Working. Paper 124, April 1976.

/ .
/. . . [

. r - .
* Jd ' ’ v N
. . bl
v ~

Goldstein & Miller

